Skip to content

Plate Documentation

Plate

A class to represent a multiwell plate.

This class manages a multiwell plate, with functionalities to access, modify, and visualize the wells, along with their metadata.

Attributes:

Name Type Description
_default_n_rows int

Default number of rows in the plate.

_default_n_columns int

Default number of columns in the plate.

_default_well_color Tuple[float, float, float]

Default RGB color of the wells.

_default_exclude_metadata list

Default metadata keys to exclude.

_default_colormap str

Default colormap for visualizations.

Parameters:

Name Type Description Default
plate_dim Tuple[int, int]

The dimensions of the plate as (rows, columns).

None
plate_id int

A unique identifier for the plate.

1
Source code in src/plate_planner/plate.py
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
class Plate:
    """
    A class to represent a multiwell plate.

    This class manages a multiwell plate, with functionalities to access, modify, and visualize
    the wells, along with their metadata.

    Attributes:
        _default_n_rows (int): Default number of rows in the plate.
        _default_n_columns (int): Default number of columns in the plate.
        _default_well_color (Tuple[float, float, float]): Default RGB color of the wells.
        _default_exclude_metadata (list): Default metadata keys to exclude.
        _default_colormap (str): Default colormap for visualizations.

    Parameters:
        plate_dim (Tuple[int, int], optional): The dimensions of the plate as (rows, columns).
        plate_id (int, optional): A unique identifier for the plate.

    """

    _default_n_rows: int = 8
    _default_n_columns: int = 12
    _default_well_color: Tuple[float, float, float] = (1, 1, 1)
    _default_exclude_metadata = ["rgb_color", "coordinate"]
    _default_colormap: str = "tab20"

    def __init__(self, plate_dim: Union[Tuple[int, int], List[int], Dict[str, int], int] = None, plate_id: int = 1):
        """
        Initialize a new Plate instance.

        Args:
            plate_dim (Tuple[int, int], optional): The dimensions of the plate as (rows, columns).
                If None, default dimensions are used.
            plate_id (int, optional): A unique identifier for the plate.

        The constructor initializes the plate with the specified dimensions, generating wells 
        with default properties and assigning them unique coordinates and identifiers.

        Examples:
            Creating a Plate instance with default dimensions and a specific plate ID:

            >>> plate = Plate()
            >>> plate.size
            96

            >>> plate = Plate(plate_dim=(16, 24))
            >>> plate.size
            384

        """

        self._n_rows, self._n_columns = self._parse_plate_dimensions(plate_dim)

        self._rows = list(range(self._n_rows))
        self._columns = list(range(self._n_columns))

        self._alphanumerical_coordinates = self.create_alphanumerical_coordinates(self._rows, self._columns)
        self._coordinates = self.create_index_coordinates(self._rows, self._columns)

        self.size = self._n_rows * self._n_columns

        self.wells = [Well(name=self._alphanumerical_coordinates[index], 
                           coordinate=(row, col), 
                           index=index, 
                           plate_id=plate_id, 
                           rgb_color=self._default_well_color)
                      for index, (row, col) in enumerate(itertools.product(self._rows[::-1], self._columns))]

        self.plate_id = plate_id

        # dictionary to map well names to indices
        self._name_to_index_map = {well.name: well.index for well in self.wells}
        self._index_to_coordinates_map = {well.index: well.coordinate for well in self.wells}
        self._index_to_name_map = {well.index: well.name for well in self.wells}

        logger.info(f"Created a {self._n_rows}x{self._n_columns} plate with {self.size} wells.")

    def __iter__(self) -> Iterator:
        """
        Return an iterator over the wells of the plate.

        This allows direct iteration over the plate object itself.

        Example:
            >>> plate = Plate(plate_dim=(2, 2))
            >>> [well.name for well in plate]
            ['A1', 'A2', 'B1', 'B2']
        """
        return iter(self.wells)

    def __len__(self) -> int:
        """
        Returns the number of wells in the plate.

        Returns:
            int: The number of wells.

        Example:
            >>> plate = Plate()
            >>> len(plate)
            96
        """
        return len(self.wells)

    def __str__(self) -> str:
        plate_summary = f"Plate ID: {self.plate_id}\n"
        plate_summary += f"Dimensions: {self._n_rows} rows x {self._n_columns} columns\n"
        plate_summary += "Plate Layout (Well Names):\n"
        plate_array_str = np.array_str(self.get_metadata_as_numpy_array("name"))
        plate_summary += plate_array_str
        return plate_summary

    def __getitem__(self, key: Union[int, Tuple[int,int], str]) -> Well:
        """
        Retrieve a well from the plate based on its index, coordinate, or name.

        Args:
            key (int, tuple, or str): The identifier for the well. Can be an integer index, a tuple indicating row and column coordinates, or a string specifying the well's name.

        Returns:
            Well: The well object corresponding to the given key.

        Raises:
            TypeError: If the key is not an integer, tuple, or string.

        Example:
            >>> plate = Plate()
            >>> plate[0].name
            'A1'
            >>> plate[(0, 0)].name
            'A1'
            >>> plate["A1"].name
            'A1'
        """
        if isinstance(key, int):
            # Access by index
            return self.wells[key]
        elif isinstance(key, tuple):
            # Access by coordinate
            index = self._coordinates_to_index(key)
            return self.wells[index]
        elif isinstance(key, str):
            # Access by name
            index = self._name_to_index_map[key]
            return self.wells[index]
        else:
            raise TypeError("Key must be an integer, tuple, or string")

    def __setitem__(self, key, well_object: Well) -> None:
        """
        Set or replace a well in the plate based on its index, coordinate, or name.

        Args:
            key (int, tuple, or str): The identifier for the well to be set or replaced. 
                Can be an integer index, a tuple indicating row and column coordinates, or a string specifying the well's name.
            well_object (Well): The well object to set at the specified key.

        Raises:
            ValueError: If the well_object is not an instance of Well.
            IndexError: If the well index is out of range.
            TypeError: If the key is not a string, integer, or tuple.

        Example:
            >>> plate = Plate(plate_dim=(2, 2))  # Create a small 2x2 plate for simplicity
            >>> new_well = Well(name="C3", plate_id=1, coordinate=(0, 1), metadata={"study_group": "control"})  # Define a new well
            >>> plate[0] = new_well  # Set this well at the first position
            >>> plate[0].name
            'A1'
            >>> plate[0].metadata["study_group"]
            'control'
        """
        if not isinstance(well_object, Well):
            raise ValueError("Value must be an instance of Well")

        if isinstance(key, str):
            index = self._name_to_index_map[key]
            coordinate = self._index_to_coordinates_map[index]
            name = key
        elif isinstance(key, int):
            if key < 0 or key >= len(self.wells):
                raise IndexError("Well index out of range")
            index = key
            coordinate = self._index_to_coordinates_map[index]
            name = self.wells[index].name
        elif isinstance(key, tuple):
            index = self._coordinates_to_index(key)
            coordinate = key
            name = self._index_to_name_map(index)
        else:
            raise TypeError("Key must be a string, integer, or tuple")

        # Update the well object's attributes
        well_object.name = name
        well_object.coordinate = coordinate
        well_object.index = index
        well_object.plate_id = self.plate_id

        # Update the well at the specified index on the plate
        self.wells[index] = well_object
        # Update the name-to-index mapping
        self._name_to_index_map[name] = index

    def __add__(self, other: "Plate") -> "Plate":
        """
        Combine the content of this Plate with another Plate.

        The wells of both plates are combined. If wells at the same coordinates 
        exist in both plates, their metadata is merged.

        Args:
            other (Plate): Another Plate to combine with.

        Returns:
            Plate: A new Plate with combined content from both plates.

        Raises:
            ValueError: If the dimensions of the two plates do not match.

        Example:
            >>> plate1 = Plate(plate_dim=(2, 2))
            >>> plate1.wells[0].metadata = {'sample': 'A'}
            >>> plate2 = Plate(plate_dim=(2, 2))
            >>> plate2.wells[0].metadata = {'volume': 100}
            >>> combined_plate = plate1 + plate2
            >>> combined_plate.wells[0].metadata
            {'sample': 'A', 'volume': 100}
        """
        if (self._n_rows, self._n_columns) != (other._n_rows, other._n_columns):
            raise ValueError("Cannot add plates of different dimensions")

        # Create a new Plate for the combined content
        new_plate = Plate(plate_dim=(self._n_rows, self._n_columns))

        # Iterate through wells and combine metadata
        for (well_self, well_other) in zip(self.wells, other.wells):
            combined_metadata = {**well_self.metadata, **well_other.metadata}
            new_well = Well(name=well_self.name, plate_id=new_plate.plate_id,
                            coordinate=well_self.coordinate, index=well_self.index,
                            rgb_color=well_self.rgb_color, metadata=combined_metadata)
            new_plate.wells[well_self.index] = new_well

        return new_plate

    def _parse_plate_dimensions(self, plate_dim: Union[Tuple[int, int], List[int], Dict[str, int], int]) -> Tuple[int, int]:
        """
        Parse the dimensions of the plate and return the number of rows and columns. This method can handle various 
        formats for specifying the dimensions: as a tuple or list (rows, columns), as a dictionary with 'rows' and 
        'columns' keys, or as an integer representing the total number of wells in a plate. For integer inputs, 
        the method attempts to design a plate with a 2:3 aspect ratio (height to width).

        Args:
            plate_dim (tuple, list, dict, or int): The dimensions of the plate. This can be a tuple or list specifying 
                (rows, columns), a dictionary with 'rows' and 'columns' keys, or an integer specifying the total number 
                of wells, which the method will attempt to fit into a plate with a 2:3 aspect ratio.

        Returns:
            tuple: A tuple containing the number of rows and columns (rows, columns). The method ensures that the 
                resulting plate size can accommodate at least the specified number of wells while trying to maintain 
                the aspect ratio as close to 2:3 as possible.

        Raises:
            ValueError: If the plate_dim format is unsupported or incorrect, or if the number of wells specified by 
                an integer cannot be reasonably fitted into a 2:3 aspect ratio plate.

        Example:
            >>> plate = Plate()
            >>> plate._parse_plate_dimensions((3, 5))
            (3, 5)
            >>> plate._parse_plate_dimensions([4, 6])
            [4, 6]
            >>> plate._parse_plate_dimensions({"rows": 2, "columns": 8})
            (2, 8)
            >>> plate._parse_plate_dimensions(24)  # Assuming 2:3 aspect ratio
            (4, 6)
        """
        if plate_dim is None:
            return self._default_n_rows, self._default_n_columns

        if isinstance(plate_dim, (tuple, list)):
            if len(plate_dim) == 2:
                return plate_dim
            else:
                raise ValueError("Plate dimension must be a tuple or list with two elements (rows, columns).")

        if isinstance(plate_dim, dict):
            return plate_dim.get("rows", self._default_n_rows), plate_dim.get("columns", self._default_n_columns)

        if isinstance(plate_dim, int):
            # Calculate the ideal dimensions for a plate with a 2:3 aspect ratio
            aspect_ratio_width = 3
            aspect_ratio_height = 2

            ideal_height = np.sqrt(plate_dim / (aspect_ratio_width * aspect_ratio_height / aspect_ratio_height**2))
            ideal_width = (aspect_ratio_width / aspect_ratio_height) * ideal_height

            # Round the dimensions and adjust if necessary to accommodate all elements
            rows = int(np.round(ideal_height))
            columns = int(np.round(ideal_width))

            while rows * columns < plate_dim:
                if (rows + 1) * columns <= plate_dim:
                    rows += 1
                elif rows * (columns + 1) <= plate_dim:
                    columns += 1
                else:
                    rows += 1
                    columns += 1

            return rows, columns

        raise ValueError("Unsupported plate format: Must be a tuple, list, dict, or integer.")

    def _coordinates_to_index(self, coordinate: tuple) -> int:
        """
        Convert a well coordinate to its corresponding index in the plate's well list.

        Args:
            coordinate (tuple): The row and column coordinate of the well (row, col).

        Returns:
            int: The index of the well corresponding to the given coordinate.

        Raises:
            IndexError: If the coordinate is out of range of the plate's dimensions.

        Example:
            >>> plate = Plate(plate_dim=(3, 4))  # A 3x4 plate
            >>> plate._coordinates_to_index((0, 0))
            0
            >>> plate._coordinates_to_index((2, 3))
            11
            >>> plate._coordinates_to_index((3, 0))  # This should raise an IndexError
            Traceback (most recent call last):
            ...
            IndexError: Coordinate out of range
        """
        row, col = coordinate
        if row < 0 or row >= self._n_rows or col < 0 or col >= self._n_columns:
            raise IndexError("Coordinate out of range")
        return row * self._n_columns + col

    def _to_numpy_array(self, data: list) -> np.ndarray:
        """
        Convert a list of data corresponding to each well into a numpy array matching the plate's layout.

        Args:
            data (list): A list of data values corresponding to each well in the plate.

        Returns:
            numpy.ndarray: A numpy array representing the plate's layout with the provided data.

        Raises:
            Warning: If the number of data elements does not match the plate's size.

        Example:
            # Using a Plate with 4 wells (2x2) for demonstration
            >>> plate = Plate(plate_dim=(2, 2))
            >>> data = [1, 2, 3, 4]  # Sample data corresponding to each well
            >>> array = plate._to_numpy_array(data)
            >>> array.shape
            (2, 2)
            >>> array[0, 1]  # Check the value in the first well (after flipping)
            2
            >>> array[1, 0]  # Check the value in the last well (after flipping)
            3
        """
        # Create an empty array of the right shape
        plate_array = np.empty((self._n_rows, self._n_columns), dtype=object)

        # Check if the data list matches the number of wells
        if len(data) != self.size:
            raise Warning(f"Number of data elements ({len(data)}) does not match the plate's size ({self.size}).")

        # Populate the array with data
        for i, (row, col) in enumerate(self._coordinates):
            plate_array[row, col] = data[i]

        return np.flipud(plate_array)  # Flip to match the physical layout

    def get_metadata(self, metadata_key: Optional[str]) -> list:
        """
        Retrieve metadata values for all wells in the plate based on the specified key.

        Args:
            metadata_key (str, optional): The metadata key for which values are to be retrieved. 
                If None, a default value of 'NaN' is returned for each well.

        Returns:
            list: A list of metadata values for each well in the plate.

        Example:
            # Using a Plate with 4 wells and adding metadata for demonstration
            >>> plate = Plate(plate_dim=(2, 2))
            >>> for well in plate.wells:
            ...     well.metadata['sample_type'] = 'RNA'
            >>> plate.get_metadata('sample_type')
            ['RNA', 'RNA', 'RNA', 'RNA']
            >>> plate.get_metadata('non_existing_key')  # Key not present
            ['NaN', 'NaN', 'NaN', 'NaN']
        """
        if metadata_key is None:
            return ["NaN" for _ in self.wells]

        metadata_values = []
        for well in self.wells:
            value = well.get_attribute_or_metadata(metadata_key)
            metadata_values.append(value)

        return metadata_values

    def get_metadata_as_numpy_array(self, metadata_key : str) -> np.ndarray:
        """
        Retrieve metadata values for all wells in a numpy array format based on the specified key.

        Args:
            metadata_key (str): The metadata key for which values are to be retrieved.

        Returns:
            numpy.ndarray: A numpy array representing the metadata values for the plate's layout.

         Example:
            # Using a Plate with 4 wells and adding metadata for demonstration
            >>> plate = Plate(plate_dim=(2, 2))
            >>> for well in plate.wells:
            ...     well.metadata['concentration'] = 10.0
            >>> array = plate.get_metadata_as_numpy_array('concentration')
            >>> array.shape
            (2, 2)
            >>> array[0, 0]  # Value in the first well
            10.0
        """
        metadata = self.get_metadata(metadata_key)

        return self._to_numpy_array(metadata)


    def _assign_well_color(self, metadata_key: Optional[str], colormap: str) -> None:
        """
        Assign colors to each well in the plate based on the specified metadata key and colormap.

        Args:
            metadata_key (str, optional): The metadata key to use for coloring the wells. 
                If None, a default color is assigned to each well.
        colormap (str): The name of the colormap to use for coloring the wells.

        Raises:
            ValueError: If the metadata_key is invalid or not found.
        """

        def is_qualitative_colormap(colormap_name):
            """Check if a given colormap is qualitative."""
            # This list can be expanded with more qualitative colormaps
            qualitative_colormaps = ['Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 
                                    'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c']
            return colormap_name in qualitative_colormaps

        if colormap is None:
            colormap = self._default_colormap

        self._metadata_color_map = {}

        if metadata_key is not None:

            metadata_values = self.get_metadata(metadata_key)
            unique_values = list(set(metadata_values))

            cmap = plt.get_cmap(colormap)

            if is_qualitative_colormap(colormap):
                # Use colors directly for qualitative colormaps
                colors = cmap.colors
                for i, value in enumerate(unique_values):
                    if value is None or value == "NaN":
                        self._metadata_color_map[value] = self._default_well_color
                    else:
                        color_index = i % len(colors)
                        self._metadata_color_map[value] = colors[color_index][0:3]  # RGB color
            else:
                # Use scaling for non-qualitative colormaps
                color_norm = mcolors.Normalize(vmin=0, vmax=len(unique_values) - 1)
                scalar_map = cm.ScalarMappable(norm=color_norm, cmap=cmap)

                for i, value in enumerate(unique_values):
                    if value is None or value == "NaN":
                        self._metadata_color_map[value] = self._default_well_color
                    else:
                        self._metadata_color_map[value] = scalar_map.to_rgba(i)[0:3]  # RGB color

            for well in self.wells:
                metadata_value = well.get_attribute_or_metadata(metadata_key)
                well.rgb_color = self._metadata_color_map.get(metadata_value, self._default_well_color)
        else:
            # Assign default color when metadata_key is None
            for well in self.wells:
                well.rgb_color = self._default_well_color

    def as_records(self) -> List[dict]:
        """
        Convert the plate's well data into a list of dictionaries.

        Each well's attributes are converted into a dictionary, and all these dictionaries
        are compiled into a list, with one dictionary per well.

        Returns:
            list of dict: A list where each element is a dictionary representing a well's attributes.

        Example:
            >>> plate = Plate(plate_dim=(1, 2))
            >>> plate[0].metadata["sample_type"] = "plasma" # set metadata for first well
            >>> records = plate.as_records()
            >>> len(records)  # Number of wells in the plate
            2
            >>> sorted(records[0].keys())  # Show the keys of the first well's dictionary
            ['coordinate', 'empty', 'index', 'name', 'plate_id', 'rgb_color', 'sample_type']
        """
        return [well.as_dict() for well in self]

    def as_dataframe(self) -> pd.DataFrame:
        """
        Converts the plate data into a Pandas DataFrame.

        Each well and its attributes are represented as a row in the DataFrame.

        Returns:
            pandas.DataFrame: A DataFrame representing the plate's wells and their attributes.

        Example:
        >>> plate = Plate()
        >>> df = plate.as_dataframe()
        >>> len(df)
        96
        """
        return pd.DataFrame(self.as_records())

    def is_valid_metadata_key(self, key:str) -> bool:
        """
        Check if the provided key is a valid metadata key for the Well instances in the plate.

        This method verifies whether the specified key is either a direct attribute of the Well instances
        or a key within their metadata dictionary.

        Args:
            key (str): The key to check for validity as a metadata key.

        Returns:
            bool: True if the key is a valid metadata key, False otherwise.
        """
        if not key:  # If key is None or empty
            return False

        # Check if the key is a direct attribute or in the metadata dictionary of any well
        for well in self.wells:
            if hasattr(well, key) or key in well.metadata:
                return True

        return False

    def as_figure(self, annotation_metadata_key=None, 
                  color_metadata_key=None,
                  fontsize=8,
                  rotation=0,
                  step=10,
                  title_str=None,
                  title_fontsize=14,
                  alpha=0.7,
                  well_size=1200,
                  fig_width=11.69,
                  fig_height=8.27,
                  dpi=100,
                  plt_style="fivethirtyeight",
                  grid_color=(1, 1, 1),
                  edge_color=(0.5, 0.5, 0.5),
                  legend_bb=(0.15, -0.15, 0.7, 1.3),
                  legend_n_columns=6,
                  colormap="tab10",
                  show_grid=True,
                  show_frame=True
                  ) -> 'matplotlib.figure.Figure':
        """
        Create a visual representation of the plate using matplotlib.

        This method generates a figure representing the plate, with options for annotations,
        coloring based on metadata, and various styling adjustments.

        Args:
            annotation_metadata_key (str, optional): Metadata key to use for annotating wells.
            color_metadata_key (str, optional): Metadata key to determine the color of wells.
            fontsize (int, optional): Font size for annotations. Default is 8.
            rotation (int, optional): Rotation angle for annotations. Default is 0.
            step (int, optional): Step size between wells in the grid. Default is 10.
            title_str (str, optional): Title of the figure. If None, a default title is used.
            title_fontsize (str, optional): Font size for title.
            alpha (float, optional): Alpha value for well colors. Default is 0.7.
            well_size (int, optional): Size of the wells in the figure. Default is 1200.
            fig_width (float, optional): Width of the figure. Default is 11.69.
            fig_height (float, optional): Height of the figure. Default is 8.27.
            dpi (int, optional): Dots per inch for the figure. Default is 100.
            plt_style (str, optional): Matplotlib style to use. Default is 'bmh'.
            grid_color (tuple, optional): Color for the grid. Default is (1, 1, 1).
            edge_color (tuple, optional): Color for the edges of wells. Default is (0.5, 0.5, 0.5).
            legend_bb (tuple, optional): Bounding box for the legend. Default is (0.15, -0.15, 0.7, 1.3).
            legend_n_columns (int, optional): Number of columns in the legend. Default is 6.
            colormap (str, optional): Colormap name for coloring wells. Uses default colormap if None.
            show_grid (bool, optional): If True, displays a grid anchored at the well centers; default is True.
            show_grid (bool, optional): If True, plot a rectangle to frame the wells; default is True.

        Returns:
            matplotlib.figure.Figure: A figure object representing the plate.

        Raises:
            ValueError: If provided metadata keys are not valid.
        """
        colormap = colormap if colormap else self._default_colormap

        # Validate metadata keys
        if color_metadata_key and not self.is_valid_metadata_key(color_metadata_key):
            raise ValueError(f"Invalid color_metadata_key: {color_metadata_key}")
        if annotation_metadata_key and not self.is_valid_metadata_key(annotation_metadata_key):
            raise ValueError(f"Invalid annotation_metadata_key: {annotation_metadata_key}")

        # Define title
        if not title_str:
            title_str = f"Plate {self.plate_id}"
            if annotation_metadata_key or color_metadata_key:
                title_str += f", showing {annotation_metadata_key or ''} colored by {color_metadata_key or ''}"

        # Assign colors to wells
        self._assign_well_color(color_metadata_key, colormap)

        # Prepare grid and data for plotting
        minX, maxX, minY, maxY = 0, len(self._columns)*step, 0, len(self._rows)*step
        x = np.arange(minX, maxX, step)
        y = np.arange(minY, maxY, step)

        # Generate grid with columns first (column-major format)
        Xgrid, Ygrid = np.meshgrid(x, y)

        size_grid = np.ones_like(Xgrid) * well_size

        well_colors = np.ravel((self.get_metadata_as_numpy_array("rgb_color")[::-1]))

        # Plot setup
        plt.style.use(plt_style)
        fig = plt.figure(facecolor='white', figsize=(fig_width, fig_height), dpi=dpi,)
        ax = fig.add_subplot(111, facecolor='white')
        # fig, ax = plt.subplots(figsize=(fig_width, fig_height), dpi=dpi, facecolor="white")
        # Remove the axis lines
        ax.spines['top'].set_visible(False)
        ax.spines['bottom'].set_visible(False)
        ax.spines['left'].set_visible(False)
        ax.spines['right'].set_visible(False)

        ax.scatter(Xgrid, Ygrid, s=size_grid, c=well_colors, alpha=alpha, edgecolors=edge_color)

        # Annotations
        if annotation_metadata_key:
            for well in self:
                x_i = Xgrid[well.coordinate]
                y_i = Ygrid[well.coordinate]
                annotation_label = well.get_attribute_or_metadata(annotation_metadata_key)
                ax.annotate(annotation_label, (x_i, y_i), ha='center', va='center', rotation=rotation, fontsize=fontsize, bbox=dict(facecolor='white', alpha=0.5, boxstyle="round,pad=0.25,rounding_size=0.5"))

        # Legends
        if color_metadata_key:
            # Get unique categories and their corresponding colors
            legend_marker_size = np.sqrt(well_size) * 0.5
            unique_categories = set(self.get_metadata(color_metadata_key))
            legend_handles = [plt.Line2D([0], [0], marker='o', color=self._metadata_color_map.get(category, self._default_well_color), alpha=alpha, label=category, markersize=legend_marker_size, linestyle='None') 
                            for category in unique_categories]

            ax.legend(handles=legend_handles, bbox_to_anchor=legend_bb, loc='lower center', frameon=False, labelspacing=1, ncol=legend_n_columns)

        # Axis settings
        # Move x-axis ticks to the top
        ax.xaxis.tick_top()
        ax.xaxis.set_label_position('top') 

        # Adjust the axis limits to fit the plot tightly
        # Assuming 'step' is the distance between wells
        ax.set_xlim(minX - step/2, maxX - step/2)
        ax.set_ylim(minY - step/2, maxY - step/2)

        # Set x and y tick labels
        ax.set_xticks(x)
        ax.set_xticklabels([str(i + 1) for i in self._columns])
        ax.set_yticks(y)
        ax.set_yticklabels(self.row_labels[::-1])

        # Remove the tick marks but keep the labels
        ax.tick_params(axis='both', length=0) 

        # Grid settings
        if show_grid:
            ax.xaxis.grid(color=grid_color, linestyle='dashed', linewidth=1)
            ax.yaxis.grid(color=grid_color, linestyle='dashed', linewidth=1)
        else:
            ax.xaxis.grid(color=grid_color, linestyle='none',)
            ax.yaxis.grid(color=grid_color, linestyle='none',)


        # ax.set_xlim(minX - maxX*0.08, maxX - maxX*0.035)
        ax.set_ylim(minY - maxY*0.07, maxY - maxY*0.07)

        # # Set tick labels inside the plotting box
        # ax.tick_params(direction='in')

        # # Ugly but works to adjust label padding
        TICK_PADDING = 5
        xticks = [*ax.xaxis.get_major_ticks(), *ax.xaxis.get_minor_ticks()]
        yticks = [*ax.yaxis.get_major_ticks(), *ax.yaxis.get_minor_ticks()]

        for tick in (*xticks, *yticks):
                tick.set_pad(TICK_PADDING)

        # ax.set_axisbelow(False)
                # fig.subplots_adjust(left=0.15, right=0.95, top=0.85, bottom=0.15)
        ax.set_title(title_str+"\n", fontsize=title_fontsize)


        if show_frame:

            x = minX- maxX*0.03  # X-coordinate of the lower-left corner
            y = minY - maxY*0.04 # Y-coordinate of the lower-left corner
            width = maxX*0.975 # Width of the rectangle
            height = maxY*0.955  # Height of the rectangle
            border_radius = 1  # Radius of the rounded corners

            edge_alpha = 0.1
            line_width = 2  

            # Create a rounded rectangle
            rounded_rectangle = FancyBboxPatch(
                (x, y),
                width,
                height,
                boxstyle=f"round, pad={border_radius}",
                lw=line_width,
                ec=(0, 0, 0,
                edge_alpha),
                fc=(0.95,0.95,0.95),
                zorder=0)

            # Add the rounded rectangle to the axis
            ax.add_patch(rounded_rectangle)

        return fig

    def as_plotly_figure(
        self,
        annotation_metadata_key=None, 
        color_metadata_key=None,
        fontsize=14,
        title_str=None,
        title_fontsize=14,
        alpha=0.7,
        well_size=45,  # Adjusted for Plotly marker size
        fig_width=1000,  # Adjusted for Plotly size in pixels
        fig_height=700,  # Adjusted for Plotly size in pixels
        colormap_continuous="Viridis",  # Default colormap in Plotly
        colormap_discrete="D3",  # Default colormap in Plotly
        text_rotation=0,
        show_grid=True,
        theme='plotly',
        dark_mode=False,
        marker_shape='circle'
    ) -> 'plotly.graph_objs._figure.Figure':
        """
        Generates a Plotly scatter plot representing the data of a biological plate.

        This function takes various parameters for customization of the plot such as colors, 
        font sizes, title, and dimensions. It handles both continuous and discrete data types 
        for coloring and allows annotations on each point in the scatter plot.

        Args:
            annotation_metadata_key (str, optional): Metadata key for annotations. 
                Default is None.
            color_metadata_key (str, optional): Metadata key for color mapping.
                Default is None.
            fontsize (int): Font size for annotations. Default is 14.
            title_str (str, optional): Title of the plot. Default is None.
            title_fontsize (int): Font size for the plot title. Default is 14.
            alpha (float): Opacity level for markers. Default is 0.7.
            well_size (int): Marker size. Default is 45.
            fig_width (int): Width of the figure in pixels. Default is 1000.
            fig_height (int): Height of the figure in pixels. Default is 700.
            colormap_continuous (str): Colormap for continuous data. Default is "Viridis".
            colormap_discrete (str): Colormap for discrete data. Default is "D3".
            text_rotation (int): Rotation angle of text annotations. Default is 0.
            show_grid (bool): Whether to show grid lines. Default is True.
            theme (str): Plotly theme. Default is 'plotly'.

        Returns:
            plotly.graph_objs._figure.Figure.Figure: A Plotly scatter plot figure.

        Example:

        ```python
        plate = Plate()
        fig = plate.as_plotly_figure(
            annotation_metadata_key='gene_name',
            color_metadata_key='expression_level',
            fontsize=12,
            title_str='Gene Expression Levels',
            title_fontsize=16,
            alpha=0.8,
            well_size=50,
            fig_width=1200,
            fig_height=800,
            colormap_continuous="Plasma",
            text_rotation=45,
            show_grid=False,
            theme='plotly_dark'
        )
        fig.show()
        ```

        This example generates a scatter plot with gene names as annotations, colors representing
        expression levels, customized font sizes, and a dark theme.

        """
         # Transform the plate data into a DataFrame for easier manipulation
        df = self.as_dataframe()

        if dark_mode:
            annotation_bg_color = 'rgba(10, 10, 10, 0.75)'
            # annotation_font_color = "black"
        else:
            annotation_bg_color = 'rgba(255, 255, 255, 0.75)'

        # Default values if parameters are not provided
        if annotation_metadata_key is None:
            annotation_metadata_key = 'name'
        if color_metadata_key is None:
            color_metadata_key = 'white'

        if color_metadata_key == 'white':
            df[color_metadata_key] = 'white' 


        # Calculate the maximum size for each well
        # Assuming margins are set or default
        margins = dict(l=50, r=50, t=50, b=50, pad=4)  # Default margins, update if changed in your layout
        available_width = fig_width - margins['l'] - margins['r']
        available_height = fig_height - margins['t'] - margins['b']

        # Calculate space per well
        space_per_well_x = available_width / self._n_columns
        space_per_well_y = available_height / self._n_rows

        # Set well size to be the minimum of the two, with a certain scaling factor
        scaling_factor = 0.8  # Adjust this factor as needed
        well_size = min(space_per_well_x, space_per_well_y) * scaling_factor

        # Modify the plot based on marker_shape
        marker_symbol = 'square' if marker_shape == 'square' else 'circle'

        # Calculate the axis limits

        # # Calculate the grid dimensions
        step = 1 

         # Calculate the axis limits
        x_axis_min = -0.5 * step
        x_axis_max = self._n_columns * step - 0.5 * step
        y_axis_min = -0.5 * step
        y_axis_max = self._n_rows * step - 0.5 * step

        # Generate grid data for plotting, assuming equal spacing between wells
        x = np.arange(0, len(self._columns)*step, step)
        y = np.arange(0, len(self._rows)*step, step)
        Xgrid, Ygrid = np.meshgrid(x, y)

        # Convert coordinate tuples to separate columns for x and y
        df['column'] = df['coordinate'].apply(lambda c: step*c[1])
        df['row'] = df['coordinate'].apply(lambda c: step*c[0])

        # hover_data = ["name"] + list(plate[0].metadata.keys())
        hover_data = ["name"] + list(self[0].metadata.keys())

        # Determine color scale and plot type based on the data type of color_metadata_key
        if df[color_metadata_key].dtype.kind in 'ifc':  # Numeric data - continuous
            color_scale = colormap_continuous
            fig = px.scatter(
                df,
                x='column',
                y='row',
                hover_data=hover_data,
                color=color_metadata_key,
                color_continuous_scale=color_scale,
                # other parameters...
            )
        else:  # Categorical data - discrete
            discrete_color_sequence = px.colors.qualitative.__getattribute__(colormap_discrete)
            fig = px.scatter(
                df,
                x='column',
                y='row',
                hover_data=hover_data,
                color=color_metadata_key,
                color_discrete_sequence=discrete_color_sequence,
                # other parameters...
            )

        # Add annotations to each well in the plate
        for well in self:
            fig.add_annotation(
                x=Xgrid[well.coordinate],
                y=Ygrid[well.coordinate],
                text=str(well.get_attribute_or_metadata(annotation_metadata_key)),
                textangle= -1*text_rotation,
                showarrow=False,
                # font=dict(size=fontsize, color=annotation_font_color),
                bgcolor=annotation_bg_color
            )

        fig.update_traces(
            marker=dict(
                size=well_size,
                line=dict(width=2),
            opacity=alpha,
            symbol=marker_symbol,
            ),
            selector=dict(mode='markers')
        )

        # Adjust plot layout, axes, and other visual elements
        fig.update_layout(
            title=dict(text=title_str, font_size=title_fontsize),
            width=fig_width,
            height=fig_height,
            xaxis=dict(
                title="",
                showgrid=show_grid, 
                zeroline=False, 
                showticklabels=True, 
                tickmode="array",
                tickvals=list(range(0, step*self._n_columns, step)),
                ticktext=self.column_labels,
                side="top",
                tickfont=dict(size=18),
                range=[x_axis_min, x_axis_max]
            ),
            yaxis=dict(
                title="",
                showgrid=show_grid, 
                zeroline=False, 
                showticklabels=True, 
                tickmode="array",
                tickvals=list(range(0, step*step*self._n_rows, step)),
                ticktext=self.row_labels[::-1],
                tickfont=dict(size=18),
                range=[y_axis_min, y_axis_max]
            ),
            template=theme,
            legend=dict(
                orientation="h",  # Horizontal orientation
                yanchor="bottom",
                y=-0.1,  # Adjust this value to move the legend up or down
                xanchor="center",
                x=0.5
            ),
            margin=margins,
        )

        # # Make the layout responsive
        # fig.update_layout(
        #     autosize=True,
        #     margin=dict(l=50, r=50, t=50, b=50, pad=4),  # Adjust margins as needed
        #     # Remove fixed width and height, or set them to None
        #     width=None,
        #     height=None
        # )

        return fig

    def to_file(self, file_path : str = None,
                file_format : str = "csv",
                metadata_keys : list = []) -> None:
        """
        Write the plate data to a file in the specified format.

        The method supports various file formats such as CSV, TSV, and Excel. It allows 
        selection of specific metadata keys to be included in the output. If no file path 
        is specified, the file is saved in the current working directory with a default 
        name based on the plate ID.

        Args:
            file_path (str, optional): The path where the file will be saved. 
                If not specified, the file is saved in the current working directory.
            file_format (str, optional): The format of the file ('csv', 'tsv', 'xls').
            metadata_keys (list, optional): A list of metadata keys to include in the file. 
                If empty, all metadata except those in _default_exclude_metadata are included.

        Raises:
            ValueError: If an unsupported file format is specified.
        """

        if file_path is None:
            file_name = f"plate_{self.plate_id}.{file_format}"
            file_path = Path.cwd() / file_name
        else:
            file_path = Path(file_path)
            if file_path.is_dir():
                file_name = f"plate_{self.plate_id}.{file_format}"
                file_path = file_path / file_name
            else:
                if file_path.suffix == "":
                    file_path = file_path.with_suffix(f".{file_format}")
                else:
                    file_format = file_path.suffix.lstrip('.')

        logger.info(f"Writing to file:\n\t{file_path}")

        df = self.as_dataframe()

        if len(metadata_keys) > 0:
            df = df[metadata_keys]
        else:  # use all metadata except those in default_exclude_metadata
            df = df.drop(columns=self._default_exclude_metadata)

        match file_format:
            case "csv":
                df.to_csv(file_path, index=False)

            case "tsv":
                df.to_csv(file_path, sep="\t", index=False)

            case "xls":
                df.to_excel(file_path, index=False)

    def add_metadata(self, key, values) -> None:
        """
        Add or update metadata for all wells in the plate. If a list of values is provided,
        assign each value to the corresponding well. If a single value is provided, assign it to all wells.

        Args:
            key (str): The metadata key to add or update.
            values: A single value or a list of values to set for the given metadata key. 

        Example:
            >>> plate = Plate(plate_dim=(2, 2))
            >>> plate.add_metadata('sample_type', ['RNA', 'DNA', 'RNA', 'DNA'])
            >>> [well.metadata['sample_type'] for well in plate.wells]
            ['RNA', 'DNA', 'RNA', 'DNA']
            >>> plate.add_metadata('study', 'oncology')
            >>> all(well.metadata['study'] == 'oncology' for well in plate.wells)
            True

        """
        if isinstance(values, list):
            # Case when values is a list
            if len(values) != len(self.wells):
                raise ValueError("The length of values list does not match the number of wells")

            for well, value in zip(self.wells, values):
                well.metadata[key] = value
        else:
            # Case when a single value is provided
            for well in self.wells:
                well.metadata[key] = values

    @property
    def row_labels(self) -> list:
        """
        Get the row labels for the plate.

        This property generates a list of alphabetical characters representing the row labels
        of the plate, based on the number of rows in the plate.

        Returns:
            list: A list of strings, each representing a row label.

        Example:
            >>> plate = Plate(plate_dim=(8, 12))  # A standard 96-well plate
            >>> plate.row_labels
            ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
        """
        return list(string.ascii_uppercase)[:len(self._rows)]

    @property
    def column_labels(self) -> list:
        """
        Get the column labels for the plate.

        This property generates a list of numerical strings representing the column labels
        of the plate, based on the number of columns in the plate.

        Returns:
            list: A list of strings, each representing a column label.

        Example:
            >>> plate = Plate(plate_dim=(8, 12))  # A standard 96-well plate
            >>> plate.column_labels
            ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']
        """
        return [str(row_id+1) for row_id in self._columns]

    @property
    def capacity(self) -> int:
        """
        Get the number of samples that can be added to the plate, which is the same as the number of wells in this class

        Example:
            >>> plate = Plate(plate_dim=(8, 12))  # A standard 96-well plate
            >>> plate.capacity
            96
        """
        return self.size

    @property
    def plate_id(self) -> int:
        """
        Get the plate ID.

        This property returns the unique identifier of the plate.

        Returns:
            int: The plate ID.

        Example:
            >>> plate = Plate()
            >>> plate.plate_id
            1
        """
        return self._plate_id

    @plate_id.setter
    def plate_id(self, new_id) -> None:
        """
        Set a new plate ID.

        This method updates the plate ID and propagates the change to all the wells 
        within the plate.

        Args:
            new_id (int): The new plate ID to be set.

        Example:
            >>> plate = Plate()
            >>> plate.plate_id = 2
            >>> plate.plate_id
            2
        """
        self._plate_id = new_id
        for well in self.wells:
            well.plate_id = new_id

    @staticmethod    
    def create_index_coordinates(rows, columns) -> list:
        """
        Static method to create a list of index coordinates for the wells in a plate.

        The method generates a grid of coordinates, counting from left to right, 
        starting at the well in the top left. It is used to map the wells to their 
        respective positions in the plate.

        Args:
            rows (iterable): An iterable representing the rows of the plate.
            columns (iterable): An iterable representing the columns of the plate.

        Returns:
            list: A list of tuples, each representing the (row, column) index of a well.

        Example:
            >>> Plate.create_index_coordinates(range(2), range(2))
            [(1, 0), (1, 1), (0, 0), (0, 1)]
        """
        # count from left to right, starting at well in top left
        return list(itertools.product(
                                    range(len(rows)-1, -1, -1),
                                    range(0, len(columns))
                                    )
                )

    @staticmethod
    def create_alphanumerical_coordinates(rows, columns) ->  list:
        """
        Static method to create alphanumerical coordinates for the wells.

        Args:
            rows (list): A list of row indices.
            columns (list): A list of column indices.

        Returns:
            list: A list of alphanumerical coordinates (e.g., "A1", "B2").

        Example:
            >>> Plate.create_alphanumerical_coordinates([0, 1], [0, 1, 2])
            ['A1', 'A2', 'A3', 'B1', 'B2', 'B3']
            >>> Plate.create_alphanumerical_coordinates([0], [0, 1])
            ['A1', 'A2']
        """
        row_labels = list(string.ascii_uppercase)[:len(rows)]
        return [f"{row_labels[row]}{col+1}" for row, col in itertools.product(rows, columns)]

capacity: int property

Get the number of samples that can be added to the plate, which is the same as the number of wells in this class

Example

plate = Plate(plate_dim=(8, 12)) # A standard 96-well plate plate.capacity 96

column_labels: list property

Get the column labels for the plate.

This property generates a list of numerical strings representing the column labels of the plate, based on the number of columns in the plate.

Returns:

Name Type Description
list list

A list of strings, each representing a column label.

Example

plate = Plate(plate_dim=(8, 12)) # A standard 96-well plate plate.column_labels ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']

plate_id: int property writable

Get the plate ID.

This property returns the unique identifier of the plate.

Returns:

Name Type Description
int int

The plate ID.

Example

plate = Plate() plate.plate_id 1

row_labels: list property

Get the row labels for the plate.

This property generates a list of alphabetical characters representing the row labels of the plate, based on the number of rows in the plate.

Returns:

Name Type Description
list list

A list of strings, each representing a row label.

Example

plate = Plate(plate_dim=(8, 12)) # A standard 96-well plate plate.row_labels ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']

__add__(other)

Combine the content of this Plate with another Plate.

The wells of both plates are combined. If wells at the same coordinates exist in both plates, their metadata is merged.

Parameters:

Name Type Description Default
other Plate

Another Plate to combine with.

required

Returns:

Name Type Description
Plate Plate

A new Plate with combined content from both plates.

Raises:

Type Description
ValueError

If the dimensions of the two plates do not match.

Example

plate1 = Plate(plate_dim=(2, 2)) plate1.wells[0].metadata = {'sample': 'A'} plate2 = Plate(plate_dim=(2, 2)) plate2.wells[0].metadata = {'volume': 100} combined_plate = plate1 + plate2 combined_plate.wells[0].metadata {'sample': 'A', 'volume': 100}

Source code in src/plate_planner/plate.py
def __add__(self, other: "Plate") -> "Plate":
    """
    Combine the content of this Plate with another Plate.

    The wells of both plates are combined. If wells at the same coordinates 
    exist in both plates, their metadata is merged.

    Args:
        other (Plate): Another Plate to combine with.

    Returns:
        Plate: A new Plate with combined content from both plates.

    Raises:
        ValueError: If the dimensions of the two plates do not match.

    Example:
        >>> plate1 = Plate(plate_dim=(2, 2))
        >>> plate1.wells[0].metadata = {'sample': 'A'}
        >>> plate2 = Plate(plate_dim=(2, 2))
        >>> plate2.wells[0].metadata = {'volume': 100}
        >>> combined_plate = plate1 + plate2
        >>> combined_plate.wells[0].metadata
        {'sample': 'A', 'volume': 100}
    """
    if (self._n_rows, self._n_columns) != (other._n_rows, other._n_columns):
        raise ValueError("Cannot add plates of different dimensions")

    # Create a new Plate for the combined content
    new_plate = Plate(plate_dim=(self._n_rows, self._n_columns))

    # Iterate through wells and combine metadata
    for (well_self, well_other) in zip(self.wells, other.wells):
        combined_metadata = {**well_self.metadata, **well_other.metadata}
        new_well = Well(name=well_self.name, plate_id=new_plate.plate_id,
                        coordinate=well_self.coordinate, index=well_self.index,
                        rgb_color=well_self.rgb_color, metadata=combined_metadata)
        new_plate.wells[well_self.index] = new_well

    return new_plate

__getitem__(key)

Retrieve a well from the plate based on its index, coordinate, or name.

Parameters:

Name Type Description Default
key int, tuple, or str

The identifier for the well. Can be an integer index, a tuple indicating row and column coordinates, or a string specifying the well's name.

required

Returns:

Name Type Description
Well Well

The well object corresponding to the given key.

Raises:

Type Description
TypeError

If the key is not an integer, tuple, or string.

Example

plate = Plate() plate[0].name 'A1' plate[(0, 0)].name 'A1' plate["A1"].name 'A1'

Source code in src/plate_planner/plate.py
def __getitem__(self, key: Union[int, Tuple[int,int], str]) -> Well:
    """
    Retrieve a well from the plate based on its index, coordinate, or name.

    Args:
        key (int, tuple, or str): The identifier for the well. Can be an integer index, a tuple indicating row and column coordinates, or a string specifying the well's name.

    Returns:
        Well: The well object corresponding to the given key.

    Raises:
        TypeError: If the key is not an integer, tuple, or string.

    Example:
        >>> plate = Plate()
        >>> plate[0].name
        'A1'
        >>> plate[(0, 0)].name
        'A1'
        >>> plate["A1"].name
        'A1'
    """
    if isinstance(key, int):
        # Access by index
        return self.wells[key]
    elif isinstance(key, tuple):
        # Access by coordinate
        index = self._coordinates_to_index(key)
        return self.wells[index]
    elif isinstance(key, str):
        # Access by name
        index = self._name_to_index_map[key]
        return self.wells[index]
    else:
        raise TypeError("Key must be an integer, tuple, or string")

__init__(plate_dim=None, plate_id=1)

Initialize a new Plate instance.

Parameters:

Name Type Description Default
plate_dim Tuple[int, int]

The dimensions of the plate as (rows, columns). If None, default dimensions are used.

None
plate_id int

A unique identifier for the plate.

1

The constructor initializes the plate with the specified dimensions, generating wells with default properties and assigning them unique coordinates and identifiers.

Examples:

Creating a Plate instance with default dimensions and a specific plate ID:

>>> plate = Plate()
>>> plate.size
96
>>> plate = Plate(plate_dim=(16, 24))
>>> plate.size
384
Source code in src/plate_planner/plate.py
def __init__(self, plate_dim: Union[Tuple[int, int], List[int], Dict[str, int], int] = None, plate_id: int = 1):
    """
    Initialize a new Plate instance.

    Args:
        plate_dim (Tuple[int, int], optional): The dimensions of the plate as (rows, columns).
            If None, default dimensions are used.
        plate_id (int, optional): A unique identifier for the plate.

    The constructor initializes the plate with the specified dimensions, generating wells 
    with default properties and assigning them unique coordinates and identifiers.

    Examples:
        Creating a Plate instance with default dimensions and a specific plate ID:

        >>> plate = Plate()
        >>> plate.size
        96

        >>> plate = Plate(plate_dim=(16, 24))
        >>> plate.size
        384

    """

    self._n_rows, self._n_columns = self._parse_plate_dimensions(plate_dim)

    self._rows = list(range(self._n_rows))
    self._columns = list(range(self._n_columns))

    self._alphanumerical_coordinates = self.create_alphanumerical_coordinates(self._rows, self._columns)
    self._coordinates = self.create_index_coordinates(self._rows, self._columns)

    self.size = self._n_rows * self._n_columns

    self.wells = [Well(name=self._alphanumerical_coordinates[index], 
                       coordinate=(row, col), 
                       index=index, 
                       plate_id=plate_id, 
                       rgb_color=self._default_well_color)
                  for index, (row, col) in enumerate(itertools.product(self._rows[::-1], self._columns))]

    self.plate_id = plate_id

    # dictionary to map well names to indices
    self._name_to_index_map = {well.name: well.index for well in self.wells}
    self._index_to_coordinates_map = {well.index: well.coordinate for well in self.wells}
    self._index_to_name_map = {well.index: well.name for well in self.wells}

    logger.info(f"Created a {self._n_rows}x{self._n_columns} plate with {self.size} wells.")

__iter__()

Return an iterator over the wells of the plate.

This allows direct iteration over the plate object itself.

Example

plate = Plate(plate_dim=(2, 2)) [well.name for well in plate] ['A1', 'A2', 'B1', 'B2']

Source code in src/plate_planner/plate.py
def __iter__(self) -> Iterator:
    """
    Return an iterator over the wells of the plate.

    This allows direct iteration over the plate object itself.

    Example:
        >>> plate = Plate(plate_dim=(2, 2))
        >>> [well.name for well in plate]
        ['A1', 'A2', 'B1', 'B2']
    """
    return iter(self.wells)

__len__()

Returns the number of wells in the plate.

Returns:

Name Type Description
int int

The number of wells.

Example

plate = Plate() len(plate) 96

Source code in src/plate_planner/plate.py
def __len__(self) -> int:
    """
    Returns the number of wells in the plate.

    Returns:
        int: The number of wells.

    Example:
        >>> plate = Plate()
        >>> len(plate)
        96
    """
    return len(self.wells)

__setitem__(key, well_object)

Set or replace a well in the plate based on its index, coordinate, or name.

Parameters:

Name Type Description Default
key int, tuple, or str

The identifier for the well to be set or replaced. Can be an integer index, a tuple indicating row and column coordinates, or a string specifying the well's name.

required
well_object Well

The well object to set at the specified key.

required

Raises:

Type Description
ValueError

If the well_object is not an instance of Well.

IndexError

If the well index is out of range.

TypeError

If the key is not a string, integer, or tuple.

Example

plate = Plate(plate_dim=(2, 2)) # Create a small 2x2 plate for simplicity new_well = Well(name="C3", plate_id=1, coordinate=(0, 1), metadata={"study_group": "control"}) # Define a new well plate[0] = new_well # Set this well at the first position plate[0].name 'A1' plate[0].metadata["study_group"] 'control'

Source code in src/plate_planner/plate.py
def __setitem__(self, key, well_object: Well) -> None:
    """
    Set or replace a well in the plate based on its index, coordinate, or name.

    Args:
        key (int, tuple, or str): The identifier for the well to be set or replaced. 
            Can be an integer index, a tuple indicating row and column coordinates, or a string specifying the well's name.
        well_object (Well): The well object to set at the specified key.

    Raises:
        ValueError: If the well_object is not an instance of Well.
        IndexError: If the well index is out of range.
        TypeError: If the key is not a string, integer, or tuple.

    Example:
        >>> plate = Plate(plate_dim=(2, 2))  # Create a small 2x2 plate for simplicity
        >>> new_well = Well(name="C3", plate_id=1, coordinate=(0, 1), metadata={"study_group": "control"})  # Define a new well
        >>> plate[0] = new_well  # Set this well at the first position
        >>> plate[0].name
        'A1'
        >>> plate[0].metadata["study_group"]
        'control'
    """
    if not isinstance(well_object, Well):
        raise ValueError("Value must be an instance of Well")

    if isinstance(key, str):
        index = self._name_to_index_map[key]
        coordinate = self._index_to_coordinates_map[index]
        name = key
    elif isinstance(key, int):
        if key < 0 or key >= len(self.wells):
            raise IndexError("Well index out of range")
        index = key
        coordinate = self._index_to_coordinates_map[index]
        name = self.wells[index].name
    elif isinstance(key, tuple):
        index = self._coordinates_to_index(key)
        coordinate = key
        name = self._index_to_name_map(index)
    else:
        raise TypeError("Key must be a string, integer, or tuple")

    # Update the well object's attributes
    well_object.name = name
    well_object.coordinate = coordinate
    well_object.index = index
    well_object.plate_id = self.plate_id

    # Update the well at the specified index on the plate
    self.wells[index] = well_object
    # Update the name-to-index mapping
    self._name_to_index_map[name] = index

add_metadata(key, values)

Add or update metadata for all wells in the plate. If a list of values is provided, assign each value to the corresponding well. If a single value is provided, assign it to all wells.

Parameters:

Name Type Description Default
key str

The metadata key to add or update.

required
values

A single value or a list of values to set for the given metadata key.

required
Example

plate = Plate(plate_dim=(2, 2)) plate.add_metadata('sample_type', ['RNA', 'DNA', 'RNA', 'DNA']) [well.metadata['sample_type'] for well in plate.wells] ['RNA', 'DNA', 'RNA', 'DNA'] plate.add_metadata('study', 'oncology') all(well.metadata['study'] == 'oncology' for well in plate.wells) True

Source code in src/plate_planner/plate.py
def add_metadata(self, key, values) -> None:
    """
    Add or update metadata for all wells in the plate. If a list of values is provided,
    assign each value to the corresponding well. If a single value is provided, assign it to all wells.

    Args:
        key (str): The metadata key to add or update.
        values: A single value or a list of values to set for the given metadata key. 

    Example:
        >>> plate = Plate(plate_dim=(2, 2))
        >>> plate.add_metadata('sample_type', ['RNA', 'DNA', 'RNA', 'DNA'])
        >>> [well.metadata['sample_type'] for well in plate.wells]
        ['RNA', 'DNA', 'RNA', 'DNA']
        >>> plate.add_metadata('study', 'oncology')
        >>> all(well.metadata['study'] == 'oncology' for well in plate.wells)
        True

    """
    if isinstance(values, list):
        # Case when values is a list
        if len(values) != len(self.wells):
            raise ValueError("The length of values list does not match the number of wells")

        for well, value in zip(self.wells, values):
            well.metadata[key] = value
    else:
        # Case when a single value is provided
        for well in self.wells:
            well.metadata[key] = values

as_dataframe()

Converts the plate data into a Pandas DataFrame.

Each well and its attributes are represented as a row in the DataFrame.

Returns:

Type Description
DataFrame

pandas.DataFrame: A DataFrame representing the plate's wells and their attributes.

Example:

plate = Plate() df = plate.as_dataframe() len(df) 96

Source code in src/plate_planner/plate.py
def as_dataframe(self) -> pd.DataFrame:
    """
    Converts the plate data into a Pandas DataFrame.

    Each well and its attributes are represented as a row in the DataFrame.

    Returns:
        pandas.DataFrame: A DataFrame representing the plate's wells and their attributes.

    Example:
    >>> plate = Plate()
    >>> df = plate.as_dataframe()
    >>> len(df)
    96
    """
    return pd.DataFrame(self.as_records())

as_figure(annotation_metadata_key=None, color_metadata_key=None, fontsize=8, rotation=0, step=10, title_str=None, title_fontsize=14, alpha=0.7, well_size=1200, fig_width=11.69, fig_height=8.27, dpi=100, plt_style='fivethirtyeight', grid_color=(1, 1, 1), edge_color=(0.5, 0.5, 0.5), legend_bb=(0.15, -0.15, 0.7, 1.3), legend_n_columns=6, colormap='tab10', show_grid=True, show_frame=True)

Create a visual representation of the plate using matplotlib.

This method generates a figure representing the plate, with options for annotations, coloring based on metadata, and various styling adjustments.

Parameters:

Name Type Description Default
annotation_metadata_key str

Metadata key to use for annotating wells.

None
color_metadata_key str

Metadata key to determine the color of wells.

None
fontsize int

Font size for annotations. Default is 8.

8
rotation int

Rotation angle for annotations. Default is 0.

0
step int

Step size between wells in the grid. Default is 10.

10
title_str str

Title of the figure. If None, a default title is used.

None
title_fontsize str

Font size for title.

14
alpha float

Alpha value for well colors. Default is 0.7.

0.7
well_size int

Size of the wells in the figure. Default is 1200.

1200
fig_width float

Width of the figure. Default is 11.69.

11.69
fig_height float

Height of the figure. Default is 8.27.

8.27
dpi int

Dots per inch for the figure. Default is 100.

100
plt_style str

Matplotlib style to use. Default is 'bmh'.

'fivethirtyeight'
grid_color tuple

Color for the grid. Default is (1, 1, 1).

(1, 1, 1)
edge_color tuple

Color for the edges of wells. Default is (0.5, 0.5, 0.5).

(0.5, 0.5, 0.5)
legend_bb tuple

Bounding box for the legend. Default is (0.15, -0.15, 0.7, 1.3).

(0.15, -0.15, 0.7, 1.3)
legend_n_columns int

Number of columns in the legend. Default is 6.

6
colormap str

Colormap name for coloring wells. Uses default colormap if None.

'tab10'
show_grid bool

If True, displays a grid anchored at the well centers; default is True.

True
show_grid bool

If True, plot a rectangle to frame the wells; default is True.

True

Returns:

Type Description
Figure

matplotlib.figure.Figure: A figure object representing the plate.

Raises:

Type Description
ValueError

If provided metadata keys are not valid.

Source code in src/plate_planner/plate.py
def as_figure(self, annotation_metadata_key=None, 
              color_metadata_key=None,
              fontsize=8,
              rotation=0,
              step=10,
              title_str=None,
              title_fontsize=14,
              alpha=0.7,
              well_size=1200,
              fig_width=11.69,
              fig_height=8.27,
              dpi=100,
              plt_style="fivethirtyeight",
              grid_color=(1, 1, 1),
              edge_color=(0.5, 0.5, 0.5),
              legend_bb=(0.15, -0.15, 0.7, 1.3),
              legend_n_columns=6,
              colormap="tab10",
              show_grid=True,
              show_frame=True
              ) -> 'matplotlib.figure.Figure':
    """
    Create a visual representation of the plate using matplotlib.

    This method generates a figure representing the plate, with options for annotations,
    coloring based on metadata, and various styling adjustments.

    Args:
        annotation_metadata_key (str, optional): Metadata key to use for annotating wells.
        color_metadata_key (str, optional): Metadata key to determine the color of wells.
        fontsize (int, optional): Font size for annotations. Default is 8.
        rotation (int, optional): Rotation angle for annotations. Default is 0.
        step (int, optional): Step size between wells in the grid. Default is 10.
        title_str (str, optional): Title of the figure. If None, a default title is used.
        title_fontsize (str, optional): Font size for title.
        alpha (float, optional): Alpha value for well colors. Default is 0.7.
        well_size (int, optional): Size of the wells in the figure. Default is 1200.
        fig_width (float, optional): Width of the figure. Default is 11.69.
        fig_height (float, optional): Height of the figure. Default is 8.27.
        dpi (int, optional): Dots per inch for the figure. Default is 100.
        plt_style (str, optional): Matplotlib style to use. Default is 'bmh'.
        grid_color (tuple, optional): Color for the grid. Default is (1, 1, 1).
        edge_color (tuple, optional): Color for the edges of wells. Default is (0.5, 0.5, 0.5).
        legend_bb (tuple, optional): Bounding box for the legend. Default is (0.15, -0.15, 0.7, 1.3).
        legend_n_columns (int, optional): Number of columns in the legend. Default is 6.
        colormap (str, optional): Colormap name for coloring wells. Uses default colormap if None.
        show_grid (bool, optional): If True, displays a grid anchored at the well centers; default is True.
        show_grid (bool, optional): If True, plot a rectangle to frame the wells; default is True.

    Returns:
        matplotlib.figure.Figure: A figure object representing the plate.

    Raises:
        ValueError: If provided metadata keys are not valid.
    """
    colormap = colormap if colormap else self._default_colormap

    # Validate metadata keys
    if color_metadata_key and not self.is_valid_metadata_key(color_metadata_key):
        raise ValueError(f"Invalid color_metadata_key: {color_metadata_key}")
    if annotation_metadata_key and not self.is_valid_metadata_key(annotation_metadata_key):
        raise ValueError(f"Invalid annotation_metadata_key: {annotation_metadata_key}")

    # Define title
    if not title_str:
        title_str = f"Plate {self.plate_id}"
        if annotation_metadata_key or color_metadata_key:
            title_str += f", showing {annotation_metadata_key or ''} colored by {color_metadata_key or ''}"

    # Assign colors to wells
    self._assign_well_color(color_metadata_key, colormap)

    # Prepare grid and data for plotting
    minX, maxX, minY, maxY = 0, len(self._columns)*step, 0, len(self._rows)*step
    x = np.arange(minX, maxX, step)
    y = np.arange(minY, maxY, step)

    # Generate grid with columns first (column-major format)
    Xgrid, Ygrid = np.meshgrid(x, y)

    size_grid = np.ones_like(Xgrid) * well_size

    well_colors = np.ravel((self.get_metadata_as_numpy_array("rgb_color")[::-1]))

    # Plot setup
    plt.style.use(plt_style)
    fig = plt.figure(facecolor='white', figsize=(fig_width, fig_height), dpi=dpi,)
    ax = fig.add_subplot(111, facecolor='white')
    # fig, ax = plt.subplots(figsize=(fig_width, fig_height), dpi=dpi, facecolor="white")
    # Remove the axis lines
    ax.spines['top'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['right'].set_visible(False)

    ax.scatter(Xgrid, Ygrid, s=size_grid, c=well_colors, alpha=alpha, edgecolors=edge_color)

    # Annotations
    if annotation_metadata_key:
        for well in self:
            x_i = Xgrid[well.coordinate]
            y_i = Ygrid[well.coordinate]
            annotation_label = well.get_attribute_or_metadata(annotation_metadata_key)
            ax.annotate(annotation_label, (x_i, y_i), ha='center', va='center', rotation=rotation, fontsize=fontsize, bbox=dict(facecolor='white', alpha=0.5, boxstyle="round,pad=0.25,rounding_size=0.5"))

    # Legends
    if color_metadata_key:
        # Get unique categories and their corresponding colors
        legend_marker_size = np.sqrt(well_size) * 0.5
        unique_categories = set(self.get_metadata(color_metadata_key))
        legend_handles = [plt.Line2D([0], [0], marker='o', color=self._metadata_color_map.get(category, self._default_well_color), alpha=alpha, label=category, markersize=legend_marker_size, linestyle='None') 
                        for category in unique_categories]

        ax.legend(handles=legend_handles, bbox_to_anchor=legend_bb, loc='lower center', frameon=False, labelspacing=1, ncol=legend_n_columns)

    # Axis settings
    # Move x-axis ticks to the top
    ax.xaxis.tick_top()
    ax.xaxis.set_label_position('top') 

    # Adjust the axis limits to fit the plot tightly
    # Assuming 'step' is the distance between wells
    ax.set_xlim(minX - step/2, maxX - step/2)
    ax.set_ylim(minY - step/2, maxY - step/2)

    # Set x and y tick labels
    ax.set_xticks(x)
    ax.set_xticklabels([str(i + 1) for i in self._columns])
    ax.set_yticks(y)
    ax.set_yticklabels(self.row_labels[::-1])

    # Remove the tick marks but keep the labels
    ax.tick_params(axis='both', length=0) 

    # Grid settings
    if show_grid:
        ax.xaxis.grid(color=grid_color, linestyle='dashed', linewidth=1)
        ax.yaxis.grid(color=grid_color, linestyle='dashed', linewidth=1)
    else:
        ax.xaxis.grid(color=grid_color, linestyle='none',)
        ax.yaxis.grid(color=grid_color, linestyle='none',)


    # ax.set_xlim(minX - maxX*0.08, maxX - maxX*0.035)
    ax.set_ylim(minY - maxY*0.07, maxY - maxY*0.07)

    # # Set tick labels inside the plotting box
    # ax.tick_params(direction='in')

    # # Ugly but works to adjust label padding
    TICK_PADDING = 5
    xticks = [*ax.xaxis.get_major_ticks(), *ax.xaxis.get_minor_ticks()]
    yticks = [*ax.yaxis.get_major_ticks(), *ax.yaxis.get_minor_ticks()]

    for tick in (*xticks, *yticks):
            tick.set_pad(TICK_PADDING)

    # ax.set_axisbelow(False)
            # fig.subplots_adjust(left=0.15, right=0.95, top=0.85, bottom=0.15)
    ax.set_title(title_str+"\n", fontsize=title_fontsize)


    if show_frame:

        x = minX- maxX*0.03  # X-coordinate of the lower-left corner
        y = minY - maxY*0.04 # Y-coordinate of the lower-left corner
        width = maxX*0.975 # Width of the rectangle
        height = maxY*0.955  # Height of the rectangle
        border_radius = 1  # Radius of the rounded corners

        edge_alpha = 0.1
        line_width = 2  

        # Create a rounded rectangle
        rounded_rectangle = FancyBboxPatch(
            (x, y),
            width,
            height,
            boxstyle=f"round, pad={border_radius}",
            lw=line_width,
            ec=(0, 0, 0,
            edge_alpha),
            fc=(0.95,0.95,0.95),
            zorder=0)

        # Add the rounded rectangle to the axis
        ax.add_patch(rounded_rectangle)

    return fig

as_plotly_figure(annotation_metadata_key=None, color_metadata_key=None, fontsize=14, title_str=None, title_fontsize=14, alpha=0.7, well_size=45, fig_width=1000, fig_height=700, colormap_continuous='Viridis', colormap_discrete='D3', text_rotation=0, show_grid=True, theme='plotly', dark_mode=False, marker_shape='circle')

Generates a Plotly scatter plot representing the data of a biological plate.

This function takes various parameters for customization of the plot such as colors, font sizes, title, and dimensions. It handles both continuous and discrete data types for coloring and allows annotations on each point in the scatter plot.

Parameters:

Name Type Description Default
annotation_metadata_key str

Metadata key for annotations. Default is None.

None
color_metadata_key str

Metadata key for color mapping. Default is None.

None
fontsize int

Font size for annotations. Default is 14.

14
title_str str

Title of the plot. Default is None.

None
title_fontsize int

Font size for the plot title. Default is 14.

14
alpha float

Opacity level for markers. Default is 0.7.

0.7
well_size int

Marker size. Default is 45.

45
fig_width int

Width of the figure in pixels. Default is 1000.

1000
fig_height int

Height of the figure in pixels. Default is 700.

700
colormap_continuous str

Colormap for continuous data. Default is "Viridis".

'Viridis'
colormap_discrete str

Colormap for discrete data. Default is "D3".

'D3'
text_rotation int

Rotation angle of text annotations. Default is 0.

0
show_grid bool

Whether to show grid lines. Default is True.

True
theme str

Plotly theme. Default is 'plotly'.

'plotly'

Returns:

Type Description
Figure

plotly.graph_objs._figure.Figure.Figure: A Plotly scatter plot figure.

Example:

plate = Plate()
fig = plate.as_plotly_figure(
    annotation_metadata_key='gene_name',
    color_metadata_key='expression_level',
    fontsize=12,
    title_str='Gene Expression Levels',
    title_fontsize=16,
    alpha=0.8,
    well_size=50,
    fig_width=1200,
    fig_height=800,
    colormap_continuous="Plasma",
    text_rotation=45,
    show_grid=False,
    theme='plotly_dark'
)
fig.show()

This example generates a scatter plot with gene names as annotations, colors representing expression levels, customized font sizes, and a dark theme.

Source code in src/plate_planner/plate.py
def as_plotly_figure(
    self,
    annotation_metadata_key=None, 
    color_metadata_key=None,
    fontsize=14,
    title_str=None,
    title_fontsize=14,
    alpha=0.7,
    well_size=45,  # Adjusted for Plotly marker size
    fig_width=1000,  # Adjusted for Plotly size in pixels
    fig_height=700,  # Adjusted for Plotly size in pixels
    colormap_continuous="Viridis",  # Default colormap in Plotly
    colormap_discrete="D3",  # Default colormap in Plotly
    text_rotation=0,
    show_grid=True,
    theme='plotly',
    dark_mode=False,
    marker_shape='circle'
) -> 'plotly.graph_objs._figure.Figure':
    """
    Generates a Plotly scatter plot representing the data of a biological plate.

    This function takes various parameters for customization of the plot such as colors, 
    font sizes, title, and dimensions. It handles both continuous and discrete data types 
    for coloring and allows annotations on each point in the scatter plot.

    Args:
        annotation_metadata_key (str, optional): Metadata key for annotations. 
            Default is None.
        color_metadata_key (str, optional): Metadata key for color mapping.
            Default is None.
        fontsize (int): Font size for annotations. Default is 14.
        title_str (str, optional): Title of the plot. Default is None.
        title_fontsize (int): Font size for the plot title. Default is 14.
        alpha (float): Opacity level for markers. Default is 0.7.
        well_size (int): Marker size. Default is 45.
        fig_width (int): Width of the figure in pixels. Default is 1000.
        fig_height (int): Height of the figure in pixels. Default is 700.
        colormap_continuous (str): Colormap for continuous data. Default is "Viridis".
        colormap_discrete (str): Colormap for discrete data. Default is "D3".
        text_rotation (int): Rotation angle of text annotations. Default is 0.
        show_grid (bool): Whether to show grid lines. Default is True.
        theme (str): Plotly theme. Default is 'plotly'.

    Returns:
        plotly.graph_objs._figure.Figure.Figure: A Plotly scatter plot figure.

    Example:

    ```python
    plate = Plate()
    fig = plate.as_plotly_figure(
        annotation_metadata_key='gene_name',
        color_metadata_key='expression_level',
        fontsize=12,
        title_str='Gene Expression Levels',
        title_fontsize=16,
        alpha=0.8,
        well_size=50,
        fig_width=1200,
        fig_height=800,
        colormap_continuous="Plasma",
        text_rotation=45,
        show_grid=False,
        theme='plotly_dark'
    )
    fig.show()
    ```

    This example generates a scatter plot with gene names as annotations, colors representing
    expression levels, customized font sizes, and a dark theme.

    """
     # Transform the plate data into a DataFrame for easier manipulation
    df = self.as_dataframe()

    if dark_mode:
        annotation_bg_color = 'rgba(10, 10, 10, 0.75)'
        # annotation_font_color = "black"
    else:
        annotation_bg_color = 'rgba(255, 255, 255, 0.75)'

    # Default values if parameters are not provided
    if annotation_metadata_key is None:
        annotation_metadata_key = 'name'
    if color_metadata_key is None:
        color_metadata_key = 'white'

    if color_metadata_key == 'white':
        df[color_metadata_key] = 'white' 


    # Calculate the maximum size for each well
    # Assuming margins are set or default
    margins = dict(l=50, r=50, t=50, b=50, pad=4)  # Default margins, update if changed in your layout
    available_width = fig_width - margins['l'] - margins['r']
    available_height = fig_height - margins['t'] - margins['b']

    # Calculate space per well
    space_per_well_x = available_width / self._n_columns
    space_per_well_y = available_height / self._n_rows

    # Set well size to be the minimum of the two, with a certain scaling factor
    scaling_factor = 0.8  # Adjust this factor as needed
    well_size = min(space_per_well_x, space_per_well_y) * scaling_factor

    # Modify the plot based on marker_shape
    marker_symbol = 'square' if marker_shape == 'square' else 'circle'

    # Calculate the axis limits

    # # Calculate the grid dimensions
    step = 1 

     # Calculate the axis limits
    x_axis_min = -0.5 * step
    x_axis_max = self._n_columns * step - 0.5 * step
    y_axis_min = -0.5 * step
    y_axis_max = self._n_rows * step - 0.5 * step

    # Generate grid data for plotting, assuming equal spacing between wells
    x = np.arange(0, len(self._columns)*step, step)
    y = np.arange(0, len(self._rows)*step, step)
    Xgrid, Ygrid = np.meshgrid(x, y)

    # Convert coordinate tuples to separate columns for x and y
    df['column'] = df['coordinate'].apply(lambda c: step*c[1])
    df['row'] = df['coordinate'].apply(lambda c: step*c[0])

    # hover_data = ["name"] + list(plate[0].metadata.keys())
    hover_data = ["name"] + list(self[0].metadata.keys())

    # Determine color scale and plot type based on the data type of color_metadata_key
    if df[color_metadata_key].dtype.kind in 'ifc':  # Numeric data - continuous
        color_scale = colormap_continuous
        fig = px.scatter(
            df,
            x='column',
            y='row',
            hover_data=hover_data,
            color=color_metadata_key,
            color_continuous_scale=color_scale,
            # other parameters...
        )
    else:  # Categorical data - discrete
        discrete_color_sequence = px.colors.qualitative.__getattribute__(colormap_discrete)
        fig = px.scatter(
            df,
            x='column',
            y='row',
            hover_data=hover_data,
            color=color_metadata_key,
            color_discrete_sequence=discrete_color_sequence,
            # other parameters...
        )

    # Add annotations to each well in the plate
    for well in self:
        fig.add_annotation(
            x=Xgrid[well.coordinate],
            y=Ygrid[well.coordinate],
            text=str(well.get_attribute_or_metadata(annotation_metadata_key)),
            textangle= -1*text_rotation,
            showarrow=False,
            # font=dict(size=fontsize, color=annotation_font_color),
            bgcolor=annotation_bg_color
        )

    fig.update_traces(
        marker=dict(
            size=well_size,
            line=dict(width=2),
        opacity=alpha,
        symbol=marker_symbol,
        ),
        selector=dict(mode='markers')
    )

    # Adjust plot layout, axes, and other visual elements
    fig.update_layout(
        title=dict(text=title_str, font_size=title_fontsize),
        width=fig_width,
        height=fig_height,
        xaxis=dict(
            title="",
            showgrid=show_grid, 
            zeroline=False, 
            showticklabels=True, 
            tickmode="array",
            tickvals=list(range(0, step*self._n_columns, step)),
            ticktext=self.column_labels,
            side="top",
            tickfont=dict(size=18),
            range=[x_axis_min, x_axis_max]
        ),
        yaxis=dict(
            title="",
            showgrid=show_grid, 
            zeroline=False, 
            showticklabels=True, 
            tickmode="array",
            tickvals=list(range(0, step*step*self._n_rows, step)),
            ticktext=self.row_labels[::-1],
            tickfont=dict(size=18),
            range=[y_axis_min, y_axis_max]
        ),
        template=theme,
        legend=dict(
            orientation="h",  # Horizontal orientation
            yanchor="bottom",
            y=-0.1,  # Adjust this value to move the legend up or down
            xanchor="center",
            x=0.5
        ),
        margin=margins,
    )

    # # Make the layout responsive
    # fig.update_layout(
    #     autosize=True,
    #     margin=dict(l=50, r=50, t=50, b=50, pad=4),  # Adjust margins as needed
    #     # Remove fixed width and height, or set them to None
    #     width=None,
    #     height=None
    # )

    return fig

as_records()

Convert the plate's well data into a list of dictionaries.

Each well's attributes are converted into a dictionary, and all these dictionaries are compiled into a list, with one dictionary per well.

Returns:

Type Description
List[dict]

list of dict: A list where each element is a dictionary representing a well's attributes.

Example

plate = Plate(plate_dim=(1, 2)) plate[0].metadata["sample_type"] = "plasma" # set metadata for first well records = plate.as_records() len(records) # Number of wells in the plate 2 sorted(records[0].keys()) # Show the keys of the first well's dictionary ['coordinate', 'empty', 'index', 'name', 'plate_id', 'rgb_color', 'sample_type']

Source code in src/plate_planner/plate.py
def as_records(self) -> List[dict]:
    """
    Convert the plate's well data into a list of dictionaries.

    Each well's attributes are converted into a dictionary, and all these dictionaries
    are compiled into a list, with one dictionary per well.

    Returns:
        list of dict: A list where each element is a dictionary representing a well's attributes.

    Example:
        >>> plate = Plate(plate_dim=(1, 2))
        >>> plate[0].metadata["sample_type"] = "plasma" # set metadata for first well
        >>> records = plate.as_records()
        >>> len(records)  # Number of wells in the plate
        2
        >>> sorted(records[0].keys())  # Show the keys of the first well's dictionary
        ['coordinate', 'empty', 'index', 'name', 'plate_id', 'rgb_color', 'sample_type']
    """
    return [well.as_dict() for well in self]

create_alphanumerical_coordinates(rows, columns) staticmethod

Static method to create alphanumerical coordinates for the wells.

Parameters:

Name Type Description Default
rows list

A list of row indices.

required
columns list

A list of column indices.

required

Returns:

Name Type Description
list list

A list of alphanumerical coordinates (e.g., "A1", "B2").

Example

Plate.create_alphanumerical_coordinates([0, 1], [0, 1, 2]) ['A1', 'A2', 'A3', 'B1', 'B2', 'B3'] Plate.create_alphanumerical_coordinates([0], [0, 1]) ['A1', 'A2']

Source code in src/plate_planner/plate.py
@staticmethod
def create_alphanumerical_coordinates(rows, columns) ->  list:
    """
    Static method to create alphanumerical coordinates for the wells.

    Args:
        rows (list): A list of row indices.
        columns (list): A list of column indices.

    Returns:
        list: A list of alphanumerical coordinates (e.g., "A1", "B2").

    Example:
        >>> Plate.create_alphanumerical_coordinates([0, 1], [0, 1, 2])
        ['A1', 'A2', 'A3', 'B1', 'B2', 'B3']
        >>> Plate.create_alphanumerical_coordinates([0], [0, 1])
        ['A1', 'A2']
    """
    row_labels = list(string.ascii_uppercase)[:len(rows)]
    return [f"{row_labels[row]}{col+1}" for row, col in itertools.product(rows, columns)]

create_index_coordinates(rows, columns) staticmethod

Static method to create a list of index coordinates for the wells in a plate.

The method generates a grid of coordinates, counting from left to right, starting at the well in the top left. It is used to map the wells to their respective positions in the plate.

Parameters:

Name Type Description Default
rows iterable

An iterable representing the rows of the plate.

required
columns iterable

An iterable representing the columns of the plate.

required

Returns:

Name Type Description
list list

A list of tuples, each representing the (row, column) index of a well.

Example

Plate.create_index_coordinates(range(2), range(2)) [(1, 0), (1, 1), (0, 0), (0, 1)]

Source code in src/plate_planner/plate.py
@staticmethod    
def create_index_coordinates(rows, columns) -> list:
    """
    Static method to create a list of index coordinates for the wells in a plate.

    The method generates a grid of coordinates, counting from left to right, 
    starting at the well in the top left. It is used to map the wells to their 
    respective positions in the plate.

    Args:
        rows (iterable): An iterable representing the rows of the plate.
        columns (iterable): An iterable representing the columns of the plate.

    Returns:
        list: A list of tuples, each representing the (row, column) index of a well.

    Example:
        >>> Plate.create_index_coordinates(range(2), range(2))
        [(1, 0), (1, 1), (0, 0), (0, 1)]
    """
    # count from left to right, starting at well in top left
    return list(itertools.product(
                                range(len(rows)-1, -1, -1),
                                range(0, len(columns))
                                )
            )

get_metadata(metadata_key)

Retrieve metadata values for all wells in the plate based on the specified key.

Parameters:

Name Type Description Default
metadata_key str

The metadata key for which values are to be retrieved. If None, a default value of 'NaN' is returned for each well.

required

Returns:

Name Type Description
list list

A list of metadata values for each well in the plate.

Example

Using a Plate with 4 wells and adding metadata for demonstration

plate = Plate(plate_dim=(2, 2)) for well in plate.wells: ... well.metadata['sample_type'] = 'RNA' plate.get_metadata('sample_type') ['RNA', 'RNA', 'RNA', 'RNA'] plate.get_metadata('non_existing_key') # Key not present ['NaN', 'NaN', 'NaN', 'NaN']

Source code in src/plate_planner/plate.py
def get_metadata(self, metadata_key: Optional[str]) -> list:
    """
    Retrieve metadata values for all wells in the plate based on the specified key.

    Args:
        metadata_key (str, optional): The metadata key for which values are to be retrieved. 
            If None, a default value of 'NaN' is returned for each well.

    Returns:
        list: A list of metadata values for each well in the plate.

    Example:
        # Using a Plate with 4 wells and adding metadata for demonstration
        >>> plate = Plate(plate_dim=(2, 2))
        >>> for well in plate.wells:
        ...     well.metadata['sample_type'] = 'RNA'
        >>> plate.get_metadata('sample_type')
        ['RNA', 'RNA', 'RNA', 'RNA']
        >>> plate.get_metadata('non_existing_key')  # Key not present
        ['NaN', 'NaN', 'NaN', 'NaN']
    """
    if metadata_key is None:
        return ["NaN" for _ in self.wells]

    metadata_values = []
    for well in self.wells:
        value = well.get_attribute_or_metadata(metadata_key)
        metadata_values.append(value)

    return metadata_values

get_metadata_as_numpy_array(metadata_key)

Retrieve metadata values for all wells in a numpy array format based on the specified key.

Parameters:

Name Type Description Default
metadata_key str

The metadata key for which values are to be retrieved.

required

Returns:

Type Description
ndarray

numpy.ndarray: A numpy array representing the metadata values for the plate's layout.

Example: # Using a Plate with 4 wells and adding metadata for demonstration >>> plate = Plate(plate_dim=(2, 2)) >>> for well in plate.wells: ... well.metadata['concentration'] = 10.0 >>> array = plate.get_metadata_as_numpy_array('concentration') >>> array.shape (2, 2) >>> array[0, 0] # Value in the first well 10.0

Source code in src/plate_planner/plate.py
def get_metadata_as_numpy_array(self, metadata_key : str) -> np.ndarray:
    """
    Retrieve metadata values for all wells in a numpy array format based on the specified key.

    Args:
        metadata_key (str): The metadata key for which values are to be retrieved.

    Returns:
        numpy.ndarray: A numpy array representing the metadata values for the plate's layout.

     Example:
        # Using a Plate with 4 wells and adding metadata for demonstration
        >>> plate = Plate(plate_dim=(2, 2))
        >>> for well in plate.wells:
        ...     well.metadata['concentration'] = 10.0
        >>> array = plate.get_metadata_as_numpy_array('concentration')
        >>> array.shape
        (2, 2)
        >>> array[0, 0]  # Value in the first well
        10.0
    """
    metadata = self.get_metadata(metadata_key)

    return self._to_numpy_array(metadata)

is_valid_metadata_key(key)

Check if the provided key is a valid metadata key for the Well instances in the plate.

This method verifies whether the specified key is either a direct attribute of the Well instances or a key within their metadata dictionary.

Parameters:

Name Type Description Default
key str

The key to check for validity as a metadata key.

required

Returns:

Name Type Description
bool bool

True if the key is a valid metadata key, False otherwise.

Source code in src/plate_planner/plate.py
def is_valid_metadata_key(self, key:str) -> bool:
    """
    Check if the provided key is a valid metadata key for the Well instances in the plate.

    This method verifies whether the specified key is either a direct attribute of the Well instances
    or a key within their metadata dictionary.

    Args:
        key (str): The key to check for validity as a metadata key.

    Returns:
        bool: True if the key is a valid metadata key, False otherwise.
    """
    if not key:  # If key is None or empty
        return False

    # Check if the key is a direct attribute or in the metadata dictionary of any well
    for well in self.wells:
        if hasattr(well, key) or key in well.metadata:
            return True

    return False

to_file(file_path=None, file_format='csv', metadata_keys=[])

Write the plate data to a file in the specified format.

The method supports various file formats such as CSV, TSV, and Excel. It allows selection of specific metadata keys to be included in the output. If no file path is specified, the file is saved in the current working directory with a default name based on the plate ID.

Parameters:

Name Type Description Default
file_path str

The path where the file will be saved. If not specified, the file is saved in the current working directory.

None
file_format str

The format of the file ('csv', 'tsv', 'xls').

'csv'
metadata_keys list

A list of metadata keys to include in the file. If empty, all metadata except those in _default_exclude_metadata are included.

[]

Raises:

Type Description
ValueError

If an unsupported file format is specified.

Source code in src/plate_planner/plate.py
def to_file(self, file_path : str = None,
            file_format : str = "csv",
            metadata_keys : list = []) -> None:
    """
    Write the plate data to a file in the specified format.

    The method supports various file formats such as CSV, TSV, and Excel. It allows 
    selection of specific metadata keys to be included in the output. If no file path 
    is specified, the file is saved in the current working directory with a default 
    name based on the plate ID.

    Args:
        file_path (str, optional): The path where the file will be saved. 
            If not specified, the file is saved in the current working directory.
        file_format (str, optional): The format of the file ('csv', 'tsv', 'xls').
        metadata_keys (list, optional): A list of metadata keys to include in the file. 
            If empty, all metadata except those in _default_exclude_metadata are included.

    Raises:
        ValueError: If an unsupported file format is specified.
    """

    if file_path is None:
        file_name = f"plate_{self.plate_id}.{file_format}"
        file_path = Path.cwd() / file_name
    else:
        file_path = Path(file_path)
        if file_path.is_dir():
            file_name = f"plate_{self.plate_id}.{file_format}"
            file_path = file_path / file_name
        else:
            if file_path.suffix == "":
                file_path = file_path.with_suffix(f".{file_format}")
            else:
                file_format = file_path.suffix.lstrip('.')

    logger.info(f"Writing to file:\n\t{file_path}")

    df = self.as_dataframe()

    if len(metadata_keys) > 0:
        df = df[metadata_keys]
    else:  # use all metadata except those in default_exclude_metadata
        df = df.drop(columns=self._default_exclude_metadata)

    match file_format:
        case "csv":
            df.to_csv(file_path, index=False)

        case "tsv":
            df.to_csv(file_path, sep="\t", index=False)

        case "xls":
            df.to_excel(file_path, index=False)

PlateFactory

Source code in src/plate_planner/plate.py
class PlateFactory:

    @staticmethod
    def validate_qc_scheme(scheme: Union[str, Dict]) -> Dict:
        """
        Validates the QC scheme configuration. If a file path is provided, the method
        reads and validates the TOML configuration file. If a dictionary is provided,
        it directly validates the configuration.

        Validation checks include:
        - Presence of essential sections and fields.
        - Consistency of QC sample names across sections.
        - Format and validity of specified patterns.

        Args:
            scheme (Union[str, Dict]): Path to the QC scheme TOML file or the scheme as a dictionary.

        Returns:
            Dict: The validated and parsed QC scheme configuration.

        Raises:
            FileNotFoundError: If the TOML file does not exist.
            ValueError: If the configuration is invalid.
        """
        # Load configuration from file or use the provided dict
        config = scheme
        if isinstance(scheme, str):
            scheme_path = Path(scheme)
            if not scheme_path.exists():
                raise FileNotFoundError(f"The configuration file '{scheme}' does not exist.")
            with scheme_path.open('rb') as f:
                config = tomli.load(f)

        # Basic structure validation
        if "QC" not in config or "patterns" not in config["QC"] or "names" not in config["QC"]:
            raise ValueError("Invalid QC scheme configuration: Missing required sections.")

        # Validate QC names
        qc_names = config["QC"]["names"]
        if not isinstance(qc_names, dict) or not qc_names:
            raise ValueError("Invalid QC names configuration.")

       # Validate patterns using QC names
        patterns = config["QC"].get("patterns", {})
        for pattern_name, pattern_value in patterns.items():
            if isinstance(pattern_value, list):
                # Check if the list contains lists (for patterns like 'alternating')
                if pattern_value and isinstance(pattern_value[0], list):
                    for sample_list in pattern_value:
                        for sample_name in sample_list:
                            if sample_name not in qc_names:
                                raise ValueError(f"Undefined QC sample name '{sample_name}' in pattern '{pattern_name}'.")
                else:
                    # Validate each sample name in the list (for patterns like 'round_1')
                    for sample_name in pattern_value:
                        if sample_name not in qc_names:
                            raise ValueError(f"Undefined QC sample name '{sample_name}' in pattern '{pattern_name}'.")
            elif isinstance(pattern_value, dict) and 'pattern' in pattern_value and 'times' in pattern_value:
                # Validate repeat pattern format
                if not isinstance(pattern_value['pattern'], list) or not isinstance(pattern_value['times'], int):
                    raise ValueError(f"Invalid format for repeat pattern '{pattern_name}'.")
                for sample_name in pattern_value['pattern']:
                    if sample_name not in qc_names:
                        raise ValueError(f"Undefined QC sample name '{sample_name}' in repeat pattern '{pattern_name}'.")
            else:
                raise ValueError(f"Invalid pattern format for '{pattern_name}'.")

        return config

    @staticmethod
    def create_plate(*args, **kwargs) -> Plate:
        """
        Creates a plate object, deciding on the specific type of plate (SamplePlate or QCPlate)
        based on the presence of a 'QC_config' argument.

        If 'QC_config' is provided and not None, a QCPlate is created with the given QC configuration.
        Otherwise, a SamplePlate is created. The method dynamically selects the appropriate constructor
        based on the provided arguments.

        Args:
            *args: Positional arguments passed directly to the plate's constructor.
            **kwargs: Keyword arguments passed directly to the plate's constructor. If 'QC_config' is
                    among these keyword arguments and is not None, a QCPlate is instantiated. Otherwise,
                    a SamplePlate is instantiated.

        Returns:
            Plate: An instance of either SamplePlate or QCPlate, depending on the provided arguments.

        Raises:
            Exception: If the QC scheme validation fails.

        Examples:
            >>> sample_plate = PlateFactory.create_plate(plate_dim=(8, 12))
            >>> isinstance(sample_plate, SamplePlate)
            True

            >>> # Example QC configuration for testing purposes
            >>> qc_config = {
                        'QC': {
                            'start_with_QC_round': False,
                            'run_QC_after_n_specimens': 11,
                            'names': {
                                'EC': 'EC: External_Control_(matrix)',
                                'PB': 'PB: Paper_Blank',
                                'PO': 'PO: Pooled_specimens'
                            },
                            'patterns': {
                                'alternating': [['EC', 'PB'], ['EC', 'PO']],
                            }
                        }
                    }
            >>> qc_plate = PlateFactory.create_plate(plate_dim=(8, 12), QC_config=qc_config)
            >>> isinstance(qc_plate, QCPlate)
            True

            >>> # Creating a plate without specifying 'plate_dim', default dimensions should be used
            >>> default_plate = PlateFactory.create_plate()
            >>> isinstance(default_plate, SamplePlate)
            True

        """
        if 'QC_config' in kwargs:
            try:
                qc_config = PlateFactory.validate_qc_scheme(kwargs['QC_config'])
                # Replace the original QC_config with the validated version
                kwargs['QC_config'] = qc_config
                return QCPlate(*args, **kwargs)
            except (FileNotFoundError, ValueError) as e:
                raise Exception(f"Failed to validate QC scheme: {e}")
        else:
            return SamplePlate(*args, **kwargs)

create_plate(*args, **kwargs) staticmethod

Creates a plate object, deciding on the specific type of plate (SamplePlate or QCPlate) based on the presence of a 'QC_config' argument.

If 'QC_config' is provided and not None, a QCPlate is created with the given QC configuration. Otherwise, a SamplePlate is created. The method dynamically selects the appropriate constructor based on the provided arguments.

Parameters:

Name Type Description Default
*args

Positional arguments passed directly to the plate's constructor.

()
**kwargs

Keyword arguments passed directly to the plate's constructor. If 'QC_config' is among these keyword arguments and is not None, a QCPlate is instantiated. Otherwise, a SamplePlate is instantiated.

{}

Returns:

Name Type Description
Plate Plate

An instance of either SamplePlate or QCPlate, depending on the provided arguments.

Raises:

Type Description
Exception

If the QC scheme validation fails.

Examples:

>>> sample_plate = PlateFactory.create_plate(plate_dim=(8, 12))
>>> isinstance(sample_plate, SamplePlate)
True
>>> # Example QC configuration for testing purposes
>>> qc_config = {
            'QC': {
                'start_with_QC_round': False,
                'run_QC_after_n_specimens': 11,
                'names': {
                    'EC': 'EC: External_Control_(matrix)',
                    'PB': 'PB: Paper_Blank',
                    'PO': 'PO: Pooled_specimens'
                },
                'patterns': {
                    'alternating': [['EC', 'PB'], ['EC', 'PO']],
                }
            }
        }
>>> qc_plate = PlateFactory.create_plate(plate_dim=(8, 12), QC_config=qc_config)
>>> isinstance(qc_plate, QCPlate)
True
>>> # Creating a plate without specifying 'plate_dim', default dimensions should be used
>>> default_plate = PlateFactory.create_plate()
>>> isinstance(default_plate, SamplePlate)
True
Source code in src/plate_planner/plate.py
@staticmethod
def create_plate(*args, **kwargs) -> Plate:
    """
    Creates a plate object, deciding on the specific type of plate (SamplePlate or QCPlate)
    based on the presence of a 'QC_config' argument.

    If 'QC_config' is provided and not None, a QCPlate is created with the given QC configuration.
    Otherwise, a SamplePlate is created. The method dynamically selects the appropriate constructor
    based on the provided arguments.

    Args:
        *args: Positional arguments passed directly to the plate's constructor.
        **kwargs: Keyword arguments passed directly to the plate's constructor. If 'QC_config' is
                among these keyword arguments and is not None, a QCPlate is instantiated. Otherwise,
                a SamplePlate is instantiated.

    Returns:
        Plate: An instance of either SamplePlate or QCPlate, depending on the provided arguments.

    Raises:
        Exception: If the QC scheme validation fails.

    Examples:
        >>> sample_plate = PlateFactory.create_plate(plate_dim=(8, 12))
        >>> isinstance(sample_plate, SamplePlate)
        True

        >>> # Example QC configuration for testing purposes
        >>> qc_config = {
                    'QC': {
                        'start_with_QC_round': False,
                        'run_QC_after_n_specimens': 11,
                        'names': {
                            'EC': 'EC: External_Control_(matrix)',
                            'PB': 'PB: Paper_Blank',
                            'PO': 'PO: Pooled_specimens'
                        },
                        'patterns': {
                            'alternating': [['EC', 'PB'], ['EC', 'PO']],
                        }
                    }
                }
        >>> qc_plate = PlateFactory.create_plate(plate_dim=(8, 12), QC_config=qc_config)
        >>> isinstance(qc_plate, QCPlate)
        True

        >>> # Creating a plate without specifying 'plate_dim', default dimensions should be used
        >>> default_plate = PlateFactory.create_plate()
        >>> isinstance(default_plate, SamplePlate)
        True

    """
    if 'QC_config' in kwargs:
        try:
            qc_config = PlateFactory.validate_qc_scheme(kwargs['QC_config'])
            # Replace the original QC_config with the validated version
            kwargs['QC_config'] = qc_config
            return QCPlate(*args, **kwargs)
        except (FileNotFoundError, ValueError) as e:
            raise Exception(f"Failed to validate QC scheme: {e}")
    else:
        return SamplePlate(*args, **kwargs)

validate_qc_scheme(scheme) staticmethod

Validates the QC scheme configuration. If a file path is provided, the method reads and validates the TOML configuration file. If a dictionary is provided, it directly validates the configuration.

Validation checks include: - Presence of essential sections and fields. - Consistency of QC sample names across sections. - Format and validity of specified patterns.

Parameters:

Name Type Description Default
scheme Union[str, Dict]

Path to the QC scheme TOML file or the scheme as a dictionary.

required

Returns:

Name Type Description
Dict Dict

The validated and parsed QC scheme configuration.

Raises:

Type Description
FileNotFoundError

If the TOML file does not exist.

ValueError

If the configuration is invalid.

Source code in src/plate_planner/plate.py
@staticmethod
def validate_qc_scheme(scheme: Union[str, Dict]) -> Dict:
    """
    Validates the QC scheme configuration. If a file path is provided, the method
    reads and validates the TOML configuration file. If a dictionary is provided,
    it directly validates the configuration.

    Validation checks include:
    - Presence of essential sections and fields.
    - Consistency of QC sample names across sections.
    - Format and validity of specified patterns.

    Args:
        scheme (Union[str, Dict]): Path to the QC scheme TOML file or the scheme as a dictionary.

    Returns:
        Dict: The validated and parsed QC scheme configuration.

    Raises:
        FileNotFoundError: If the TOML file does not exist.
        ValueError: If the configuration is invalid.
    """
    # Load configuration from file or use the provided dict
    config = scheme
    if isinstance(scheme, str):
        scheme_path = Path(scheme)
        if not scheme_path.exists():
            raise FileNotFoundError(f"The configuration file '{scheme}' does not exist.")
        with scheme_path.open('rb') as f:
            config = tomli.load(f)

    # Basic structure validation
    if "QC" not in config or "patterns" not in config["QC"] or "names" not in config["QC"]:
        raise ValueError("Invalid QC scheme configuration: Missing required sections.")

    # Validate QC names
    qc_names = config["QC"]["names"]
    if not isinstance(qc_names, dict) or not qc_names:
        raise ValueError("Invalid QC names configuration.")

   # Validate patterns using QC names
    patterns = config["QC"].get("patterns", {})
    for pattern_name, pattern_value in patterns.items():
        if isinstance(pattern_value, list):
            # Check if the list contains lists (for patterns like 'alternating')
            if pattern_value and isinstance(pattern_value[0], list):
                for sample_list in pattern_value:
                    for sample_name in sample_list:
                        if sample_name not in qc_names:
                            raise ValueError(f"Undefined QC sample name '{sample_name}' in pattern '{pattern_name}'.")
            else:
                # Validate each sample name in the list (for patterns like 'round_1')
                for sample_name in pattern_value:
                    if sample_name not in qc_names:
                        raise ValueError(f"Undefined QC sample name '{sample_name}' in pattern '{pattern_name}'.")
        elif isinstance(pattern_value, dict) and 'pattern' in pattern_value and 'times' in pattern_value:
            # Validate repeat pattern format
            if not isinstance(pattern_value['pattern'], list) or not isinstance(pattern_value['times'], int):
                raise ValueError(f"Invalid format for repeat pattern '{pattern_name}'.")
            for sample_name in pattern_value['pattern']:
                if sample_name not in qc_names:
                    raise ValueError(f"Undefined QC sample name '{sample_name}' in repeat pattern '{pattern_name}'.")
        else:
            raise ValueError(f"Invalid pattern format for '{pattern_name}'.")

    return config

QCPlate

Bases: Plate

summary Class that represents a multiwell plate where some wells can contain quality control samples according to the scheme defined in QC_config; either a file or a dict following the same structure

Parameters:

Name Type Description Default
Plate _type_

description

required
Source code in src/plate_planner/plate.py
class QCPlate(Plate):
    """_summary_
    Class that represents a multiwell plate where some wells can 
    contain quality control samples according to the scheme defined 
    in QC_config; either a <config_file.toml> file or a dict following the same structure

    Args:
        Plate (_type_): _description_
    """

    _non_qc_sample_code : str = "S"
    _non_qc_sample_name : str = "Specimen"

    def __init__(self, QC_config = None, *args, **kwargs):
        super().__init__(*args, **kwargs)

        if QC_config is not None:

            if isinstance(QC_config, dict):
                self.config = QC_config
            else:                                        
                self.config = self.load_config_file(QC_config)

            if self.config is not None: 
                self.create_QC_plate_layout()

            else:
                logger.error(f"No scheme for QC samples provided.")


    def __repr__(self):
        return f"{self.__class__.__name__}(({len(self._rows)},{len(self._columns)}), plate_id={self.plate_id})"

    def __str__(self):
        plate_summary = f"Plate ID: {self.plate_id}\n"
        plate_summary += f"Dimensions: {self._n_rows} rows x {self._n_columns} columns\n"
        plate_summary += "Plate Layout (Sample Codes):\n"
        plate_array_str = np.array_str(self.get_metadata_as_numpy_array("sample_code"))
        plate_summary += plate_array_str
        return plate_summary

    def define_unique_QC_sequences(self):
        """ Sets up the unique QC sequences for each round based on the new config structure. """
        logger.debug("Setting up dynamic QC scheme from config file")

        # Initialize variables
        total_wells = self.size
        qc_round_frequency = self.config['QC']['run_QC_after_n_specimens']
        max_rounds = total_wells // qc_round_frequency

        # Step 1: Initialize sequence map
        self.qc_sequence_map = {round_num: [] for round_num in range(1, max_rounds + 1)}

        # Step 2: Apply specific round patterns
        for key, value in self.config['QC']['patterns'].items():
            if key.startswith('round_'):
                round_number = int(key.split('_')[1])
                self.qc_sequence_map[round_number] = value

        # Step 3: Apply repeat pattern
        if 'repeat' in self.config['QC']['patterns']:
            repeat_config = self.config['QC']['patterns']['repeat_pattern']
            pattern, times = repeat_config['pattern'], repeat_config['times']
            for i in range(1, times + 1):
                if not self.qc_sequence_map[i]:
                    self.qc_sequence_map[i] = pattern

        # Step 4: Apply alternating patterns
        if 'alternating' in self.config['QC']['patterns']:
            alternating_patterns = self.config['QC']['patterns']['alternating']
            alt_index = 0
            for round_num in range(1, max_rounds + 1):
                if not self.qc_sequence_map[round_num]: 
                    self.qc_sequence_map[round_num] = alternating_patterns[alt_index % len(alternating_patterns)]
                    alt_index += 1


        # Log the defined sequences
        for round_number, sequence in self.qc_sequence_map.items():
            logger.debug(f"Round {round_number}: {sequence}")

    def create_QC_plate_layout(self):
        """
        Creates the plate layout with QC and specimen samples based on the configuration provided.

        This method initializes the QC sample placement according to the unique QC sequences defined for each round.
        It iterates over all the wells in the plate, placing QC samples at the specified intervals and filling the
        rest with specimen samples. The method handles the transition between different rounds of QC samples and ensures
        that each well is assigned the correct sample type metadata.

        The process accounts for special configurations such as starting the plate with a QC round and adjusts the
        placement of QC and specimen samples accordingly. If the iterator of QC samples for a given round is exhausted,
        the method transitions to the next round's sequence of QC samples.

        Attributes:
            None directly used, but utilizes class attributes such as self.config and self.size which are set during initialization.

        Raises:
            StopIteration: An exception is caught to indicate the end of a QC sample sequence for a round,
                        triggering the transition to the next round or switching back to specimen sample assignment.
        """
        logger.info("Creating dynamic plate layout with QC samples.")

        self.define_unique_QC_sequences()

        # Initialize counters for QC sample types and control variables for round and specimen handling
        counts = {qc_type: 0 for qc_type in self.config["QC"]["names"].keys()}
        round_counter = 1
        specimen_counter = 0
        qc_round_frequency = self.config['QC']['run_QC_after_n_specimens']
        start_with_qc = self.config['QC']['start_with_QC_round']
        current_round_qc_samples = iter(self.qc_sequence_map.get(round_counter, []))


        # Start and End patterns have highest priority
        # +++++++++++++++++++++++++++++++++++++++++++++++++++
        # Pre-allocate wells for 'start' pattern
        start_pattern = self.config['QC']['patterns'].get('start', [])
        for i, qc_sample in enumerate(start_pattern):
            self.assign_qc_sample_metadata(i, qc_sample, counts)

        start_well_offset = len(start_pattern)
        end_pattern = self.config['QC']['patterns'].get('end', [])
        end_well_offset = len(end_pattern)

        # Pre-allocate wells for 'end' pattern at the end of the plate
        for i, qc_sample in enumerate(end_pattern):
            self.assign_qc_sample_metadata(self.size - end_well_offset + i, qc_sample, counts)

        # +++++++++++++++++++++++++++++++++++++++++++++++++++

        current_round_qc_samples = iter(self.qc_sequence_map.get(round_counter, []))

        # Adjust the loop to start and end accounting for 'start' and 'end' patterns
        # for well_index in range(0, self.size - end_well_offset):
        for well_index in range(start_well_offset, self.size - end_well_offset):
        # for well_index in range(self.size):
            # Handle the initial placement of QC samples if the configuration specifies starting with a QC round
            if start_with_qc and round_counter == 1:
                try:
                    # Attempt to place a QC sample for the first round
                    qc_sample = next(current_round_qc_samples)
                    self.assign_qc_sample_metadata(well_index, qc_sample, counts)
                    continue # Skip to the next iteration to continue placing QC samples
                except StopIteration:
                    # If no more QC samples are available for the current round, transition to the next round
                    round_counter += 1
                    current_round_qc_samples = iter(self.qc_sequence_map.get(round_counter, []))

            # Check if it's time to place a QC sample based on the specified frequency
            if specimen_counter >= qc_round_frequency:
                try:
                    # Place a QC sample and reset the specimen counter for the next sequence
                    qc_sample = next(current_round_qc_samples)
                    self.assign_qc_sample_metadata(well_index, qc_sample, counts)
                except StopIteration:
                    # Transition to the next round of QC samples if available, or continue with specimen placement
                    round_counter += 1
                    specimen_counter = 0 # Reset specimen counter as we're starting a new QC round or specimen sequence
                    current_round_qc_samples = iter(self.qc_sequence_map.get(round_counter, []))
                    # Place a specimen sample immediately if QC samples for the new round are exhausted or not defined
                    self.assign_specimen_sample_metadata(well_index, specimen_counter)
                    specimen_counter += 1
            else:
                # Place a specimen sample and increment the counter
                self.assign_specimen_sample_metadata(well_index, specimen_counter)
                specimen_counter += 1

        # Log the final layout for debugging
        for well in self.wells:
            logger.debug(f"Well {well.name}: {well.metadata}")

    def assign_qc_sample_metadata(self, well_index, qc_sample, counts: dict):
        self.wells[well_index].metadata["QC"] = True
        sample_code = qc_sample
        counts[sample_code] += 1
        self.wells[well_index].metadata["sample_code"] = sample_code
        self.wells[well_index].metadata["sample_type"] = self.config["QC"]["names"][sample_code]
        self.wells[well_index].metadata["sample_name"] = f"{sample_code}{counts[sample_code]}"

    def assign_specimen_sample_metadata(self, well_index, count):
        self.wells[well_index].metadata["QC"] = False
        self.wells[well_index].metadata["sample_code"] = self._non_qc_sample_code
        self.wells[well_index].metadata["sample_type"] = self._non_qc_sample_name
        self.wells[well_index].metadata["sample_name"] = f"{self._non_qc_sample_code}{count + 1}"

    def as_plotly_figure(
        self,
        annotation_metadata_key="sample_code",  # Changed default value
        color_metadata_key="sample_code",  # Changed default value
        fontsize=14,
        title_str=None,
        title_fontsize=14,
        alpha=0.7,
        well_size=45,  # Adjusted for Plotly marker size
        fig_width=1000,  # Adjusted for Plotly size in pixels
        fig_height=700,  # Adjusted for Plotly size in pixels
        colormap_continuous="Viridis",  # Default colormap in Plotly
        colormap_discrete="D3",  # Default colormap in Plotly
        text_rotation=0,
        show_grid=True,
        theme='plotly',
        dark_mode=False,
        marker_shape='circle'
    ):
        """
        Generates a Plotly figure that visualizes the plate and optional metadata 

        This method overrides the as_plotly_figure() from the Plate class to provide other defaults for annotaion and color based on QC and sample codes
        """
        # Call the superclass method with possibly modified default values
        # Here, if annotation_metadata_key or color_metadata_key are not provided in the call,
        # it uses the new defaults specified above
        return super().as_plotly_figure(
            annotation_metadata_key=annotation_metadata_key,
            color_metadata_key=color_metadata_key,
            fontsize=fontsize,
            title_str=title_str,
            title_fontsize=title_fontsize,
            alpha=alpha,
            well_size=well_size,
            fig_width=fig_width,
            fig_height=fig_height,
            colormap_continuous=colormap_continuous,
            colormap_discrete=colormap_discrete,
            text_rotation=text_rotation,
            show_grid=show_grid,
            theme=theme,
            dark_mode=dark_mode,
            marker_shape=marker_shape
        )

    @property
    def capacity(self):
        # number of non-QC samples that can be added to the plate - TODO change name?
        return sum([not well.metadata["QC"] for well in self.wells])

    @staticmethod
    def load_config_file(config_file: str = None) -> dict:

        # READ CONFIG FILE
        if config_file is None: 

            logger.warning("No config file specified. Trying to find a toml file in current folder.")

            config_file_search = glob.glob("*.toml")      

            if config_file_search:
                config_file = config_file_search[0]
                logger.info(f"Using toml file '{config_file}'")

        try:
            with open(config_file, mode="rb") as fp:
                config = tomli.load(fp)

            logger.info(f"Successfully loaded config file {config_file}")
            logger.debug(f"{config}")

            return config

        except FileNotFoundError:
            logger.error(f"Could not find/open config file {config_file}")

            raise FileExistsError(config_file)      

as_plotly_figure(annotation_metadata_key='sample_code', color_metadata_key='sample_code', fontsize=14, title_str=None, title_fontsize=14, alpha=0.7, well_size=45, fig_width=1000, fig_height=700, colormap_continuous='Viridis', colormap_discrete='D3', text_rotation=0, show_grid=True, theme='plotly', dark_mode=False, marker_shape='circle')

Generates a Plotly figure that visualizes the plate and optional metadata

This method overrides the as_plotly_figure() from the Plate class to provide other defaults for annotaion and color based on QC and sample codes

Source code in src/plate_planner/plate.py
def as_plotly_figure(
    self,
    annotation_metadata_key="sample_code",  # Changed default value
    color_metadata_key="sample_code",  # Changed default value
    fontsize=14,
    title_str=None,
    title_fontsize=14,
    alpha=0.7,
    well_size=45,  # Adjusted for Plotly marker size
    fig_width=1000,  # Adjusted for Plotly size in pixels
    fig_height=700,  # Adjusted for Plotly size in pixels
    colormap_continuous="Viridis",  # Default colormap in Plotly
    colormap_discrete="D3",  # Default colormap in Plotly
    text_rotation=0,
    show_grid=True,
    theme='plotly',
    dark_mode=False,
    marker_shape='circle'
):
    """
    Generates a Plotly figure that visualizes the plate and optional metadata 

    This method overrides the as_plotly_figure() from the Plate class to provide other defaults for annotaion and color based on QC and sample codes
    """
    # Call the superclass method with possibly modified default values
    # Here, if annotation_metadata_key or color_metadata_key are not provided in the call,
    # it uses the new defaults specified above
    return super().as_plotly_figure(
        annotation_metadata_key=annotation_metadata_key,
        color_metadata_key=color_metadata_key,
        fontsize=fontsize,
        title_str=title_str,
        title_fontsize=title_fontsize,
        alpha=alpha,
        well_size=well_size,
        fig_width=fig_width,
        fig_height=fig_height,
        colormap_continuous=colormap_continuous,
        colormap_discrete=colormap_discrete,
        text_rotation=text_rotation,
        show_grid=show_grid,
        theme=theme,
        dark_mode=dark_mode,
        marker_shape=marker_shape
    )

create_QC_plate_layout()

Creates the plate layout with QC and specimen samples based on the configuration provided.

This method initializes the QC sample placement according to the unique QC sequences defined for each round. It iterates over all the wells in the plate, placing QC samples at the specified intervals and filling the rest with specimen samples. The method handles the transition between different rounds of QC samples and ensures that each well is assigned the correct sample type metadata.

The process accounts for special configurations such as starting the plate with a QC round and adjusts the placement of QC and specimen samples accordingly. If the iterator of QC samples for a given round is exhausted, the method transitions to the next round's sequence of QC samples.

Raises:

Type Description
StopIteration

An exception is caught to indicate the end of a QC sample sequence for a round, triggering the transition to the next round or switching back to specimen sample assignment.

Source code in src/plate_planner/plate.py
def create_QC_plate_layout(self):
    """
    Creates the plate layout with QC and specimen samples based on the configuration provided.

    This method initializes the QC sample placement according to the unique QC sequences defined for each round.
    It iterates over all the wells in the plate, placing QC samples at the specified intervals and filling the
    rest with specimen samples. The method handles the transition between different rounds of QC samples and ensures
    that each well is assigned the correct sample type metadata.

    The process accounts for special configurations such as starting the plate with a QC round and adjusts the
    placement of QC and specimen samples accordingly. If the iterator of QC samples for a given round is exhausted,
    the method transitions to the next round's sequence of QC samples.

    Attributes:
        None directly used, but utilizes class attributes such as self.config and self.size which are set during initialization.

    Raises:
        StopIteration: An exception is caught to indicate the end of a QC sample sequence for a round,
                    triggering the transition to the next round or switching back to specimen sample assignment.
    """
    logger.info("Creating dynamic plate layout with QC samples.")

    self.define_unique_QC_sequences()

    # Initialize counters for QC sample types and control variables for round and specimen handling
    counts = {qc_type: 0 for qc_type in self.config["QC"]["names"].keys()}
    round_counter = 1
    specimen_counter = 0
    qc_round_frequency = self.config['QC']['run_QC_after_n_specimens']
    start_with_qc = self.config['QC']['start_with_QC_round']
    current_round_qc_samples = iter(self.qc_sequence_map.get(round_counter, []))


    # Start and End patterns have highest priority
    # +++++++++++++++++++++++++++++++++++++++++++++++++++
    # Pre-allocate wells for 'start' pattern
    start_pattern = self.config['QC']['patterns'].get('start', [])
    for i, qc_sample in enumerate(start_pattern):
        self.assign_qc_sample_metadata(i, qc_sample, counts)

    start_well_offset = len(start_pattern)
    end_pattern = self.config['QC']['patterns'].get('end', [])
    end_well_offset = len(end_pattern)

    # Pre-allocate wells for 'end' pattern at the end of the plate
    for i, qc_sample in enumerate(end_pattern):
        self.assign_qc_sample_metadata(self.size - end_well_offset + i, qc_sample, counts)

    # +++++++++++++++++++++++++++++++++++++++++++++++++++

    current_round_qc_samples = iter(self.qc_sequence_map.get(round_counter, []))

    # Adjust the loop to start and end accounting for 'start' and 'end' patterns
    # for well_index in range(0, self.size - end_well_offset):
    for well_index in range(start_well_offset, self.size - end_well_offset):
    # for well_index in range(self.size):
        # Handle the initial placement of QC samples if the configuration specifies starting with a QC round
        if start_with_qc and round_counter == 1:
            try:
                # Attempt to place a QC sample for the first round
                qc_sample = next(current_round_qc_samples)
                self.assign_qc_sample_metadata(well_index, qc_sample, counts)
                continue # Skip to the next iteration to continue placing QC samples
            except StopIteration:
                # If no more QC samples are available for the current round, transition to the next round
                round_counter += 1
                current_round_qc_samples = iter(self.qc_sequence_map.get(round_counter, []))

        # Check if it's time to place a QC sample based on the specified frequency
        if specimen_counter >= qc_round_frequency:
            try:
                # Place a QC sample and reset the specimen counter for the next sequence
                qc_sample = next(current_round_qc_samples)
                self.assign_qc_sample_metadata(well_index, qc_sample, counts)
            except StopIteration:
                # Transition to the next round of QC samples if available, or continue with specimen placement
                round_counter += 1
                specimen_counter = 0 # Reset specimen counter as we're starting a new QC round or specimen sequence
                current_round_qc_samples = iter(self.qc_sequence_map.get(round_counter, []))
                # Place a specimen sample immediately if QC samples for the new round are exhausted or not defined
                self.assign_specimen_sample_metadata(well_index, specimen_counter)
                specimen_counter += 1
        else:
            # Place a specimen sample and increment the counter
            self.assign_specimen_sample_metadata(well_index, specimen_counter)
            specimen_counter += 1

    # Log the final layout for debugging
    for well in self.wells:
        logger.debug(f"Well {well.name}: {well.metadata}")

define_unique_QC_sequences()

Sets up the unique QC sequences for each round based on the new config structure.

Source code in src/plate_planner/plate.py
def define_unique_QC_sequences(self):
    """ Sets up the unique QC sequences for each round based on the new config structure. """
    logger.debug("Setting up dynamic QC scheme from config file")

    # Initialize variables
    total_wells = self.size
    qc_round_frequency = self.config['QC']['run_QC_after_n_specimens']
    max_rounds = total_wells // qc_round_frequency

    # Step 1: Initialize sequence map
    self.qc_sequence_map = {round_num: [] for round_num in range(1, max_rounds + 1)}

    # Step 2: Apply specific round patterns
    for key, value in self.config['QC']['patterns'].items():
        if key.startswith('round_'):
            round_number = int(key.split('_')[1])
            self.qc_sequence_map[round_number] = value

    # Step 3: Apply repeat pattern
    if 'repeat' in self.config['QC']['patterns']:
        repeat_config = self.config['QC']['patterns']['repeat_pattern']
        pattern, times = repeat_config['pattern'], repeat_config['times']
        for i in range(1, times + 1):
            if not self.qc_sequence_map[i]:
                self.qc_sequence_map[i] = pattern

    # Step 4: Apply alternating patterns
    if 'alternating' in self.config['QC']['patterns']:
        alternating_patterns = self.config['QC']['patterns']['alternating']
        alt_index = 0
        for round_num in range(1, max_rounds + 1):
            if not self.qc_sequence_map[round_num]: 
                self.qc_sequence_map[round_num] = alternating_patterns[alt_index % len(alternating_patterns)]
                alt_index += 1


    # Log the defined sequences
    for round_number, sequence in self.qc_sequence_map.items():
        logger.debug(f"Round {round_number}: {sequence}")

Well dataclass

A class to represent a well in a multiwell plate.

This class provides functionalities to represent and manipulate the properties of a well, including its name, plate ID, coordinate, index, color, and metadata.

Attributes:

Name Type Description
name str

The name of the well (default: "A1").

plate_id int

The ID of the plate the well belongs to (default: 1).

coordinate Tuple[int, int]

The (row, column) coordinate of the well in the plate (default: (0, 0)).

index int

The index of the well (optional).

rgb_color Tuple[float, float, float]

The RGB color representation of the well (default: (1, 1, 1)).

metadata Dict[str, Any]

Additional metadata for the well (default: empty dictionary).

Example

well = Well(name="B2", plate_id=2, coordinate=(1, 6), index=13,) well Well(name='B2', plate_id=2, coordinate=(1, 6), index=13, empty=True, rgb_color=(1, 1, 1), metadata={})

Source code in src/plate_planner/plate.py
@dataclass
class Well:
    """
    A class to represent a well in a multiwell plate.

    This class provides functionalities to represent and manipulate the properties 
    of a well, including its name, plate ID, coordinate, index, color, and metadata.

    Attributes:
        name (str): The name of the well (default: "A1").
        plate_id (int): The ID of the plate the well belongs to (default: 1).
        coordinate (Tuple[int, int]): The (row, column) coordinate of the well in the plate (default: (0, 0)).
        index (int): The index of the well (optional).
        rgb_color (Tuple[float, float, float]): The RGB color representation of the well (default: (1, 1, 1)).
        metadata (Dict[str, Any]): Additional metadata for the well (default: empty dictionary).

    Example:
        >>> well = Well(name="B2", plate_id=2, coordinate=(1, 6), index=13,)
        >>> well
        Well(name='B2', plate_id=2, coordinate=(1, 6), index=13, empty=True, rgb_color=(1, 1, 1), metadata={})

    """
    name: str = "A1"
    plate_id: int = 1
    coordinate: Tuple[int, int] = field(default_factory=lambda: (0, 0))
    index: int = 0
    empty: bool = True
    rgb_color: Tuple[float, float, float] = field(default_factory=lambda: (1, 1, 1))
    metadata: Dict[str, Any] = field(default_factory=dict)

    def __repr__(self) -> str:
        """
        Provide an unambiguous string representation of the Well object.

        Returns:
            str: A string representation of the well.

        Example:
            >>> well = Well(name="B3", plate_id=2, coordinate=(1, 2), index=3)
            >>> repr(well)
            "Well(name='B3', plate_id=2, coordinate=(1, 2), index=3, empty=True, rgb_color=(1, 1, 1), metadata={})"
        """
        return (f"Well(name='{self.name}', plate_id={self.plate_id}, "
                f"coordinate={self.coordinate}, index={self.index}, "
                f"empty={self.empty}, rgb_color={self.rgb_color}, metadata={self.metadata})")

    def __eq__(self, other) -> bool:
        """
        Compare this Well object with another for equality.

        Args:
            other (Well): Another Well object to compare with.

        Returns:
            bool: True if both Well objects are considered equal, False otherwise.

        Example:
            >>> well1 = Well(name="A1", plate_id=1)
            >>> well2 = Well(name="A1", plate_id=1)
            >>> well3 = Well(name="B1", plate_id=1)
            >>> well4 = Well(name="A1", plate_id=2)
            >>> well1 == well2
            True
            >>> well1 == well3
            False
            >>> well4 == well1
            False
        """
        if isinstance(other, Well):
            return (self.name == other.name and self.plate_id == other.plate_id
                    and self.coordinate == other.coordinate
                    and self.index == other.index and self.empty == other.empty
                    and self.rgb_color == other.rgb_color and self.metadata == other.metadata)
        return False

    def as_dict(self) -> dict:
        """
        Converts the well object to a dictionary.

        The method returns a dictionary representation of the well object with the 
        direct attributes of the well and the keys in the metadata attribute.

        Returns:
            dict: A dictionary representation of the well object.

        Example:
            Convert a Well instance to a dictionary:
            >>> well = Well(name="B2", plate_id=2, coordinate=(1, 6), index=13, rgb_color=(0.5, 0.5, 0.5))
            >>> well_dict = well.as_dict()
            >>> print(well_dict)
            {'name': 'B2', 'plate_id': 2, 'coordinate': (1, 6), 'index': 13, 'empty': True, 'rgb_color': (0.5, 0.5, 0.5)}

        """
        attrib_dict = asdict(self)
        del attrib_dict["metadata"]
        attrib_dict.update(self.metadata)

        return attrib_dict

    def get_attribute_or_metadata(self, key: str) -> Any:
        """
        Get the value of a direct attribute or a key in the metadata dictionary.

        This method first checks if the provided key corresponds to a direct 
        attribute of the well object. If not, it then checks if the key exists 
        in the metadata dictionary.

        Args:
            key (str): The attribute name or metadata key.

        Returns:
            Any: The value of the attribute or metadata key, if found. Returns 'NaN' if not found.

        Example:
        # Retrieve attribute and metadata values from a Well instance:
        >>> well = Well(name="B2", plate_id=2, coordinate=(1, 1), index=5, rgb_color=(0.5, 0.5, 0.5))
        >>> well.metadata = {"sample_type": "plasma"}    
        >>> well.get_attribute_or_metadata("plate_id")
        2
        >>> well.get_attribute_or_metadata("sample_type")
        'plasma'
        """
        # Check if it's a direct attribute
        if hasattr(self, key):
            return getattr(self, key, "NaN")
            # return getattr(self, key, "")

        # Check if it's a key in metadata
        return self.metadata.get(key, "NaN")
        # return self.metadata.get(key, "")

    def set_attribute_or_metadata(self, key: str, value: Any) -> None:
        """
        Set the value of a direct attribute or a key in the metadata dictionary.

        This method first checks if the provided key corresponds to a direct 
        attribute of the well object. If so, it sets the value of that attribute. 
        If not, it then updates or adds the key-value pair in the metadata dictionary.

        Args:
            key (str): The attribute name or metadata key.
            value (Any): The value to be set for the attribute or metadata key.

        Example:
        # Set attribute and metadata values for a Well instance:
        >>> well = Well(name="B2", plate_id=2, coordinate=(1, 1), index=5, rgb_color=(0.5, 0.5, 0.5))
        >>> well.set_attribute_or_metadata("plate_id", 3)
        >>> well.set_attribute_or_metadata("sample_type", "serum")
        """
        # Check if it's a direct attribute
        if hasattr(self, key):
            setattr(self, key, value)
        else:
            # Set/Add a key-value pair in metadata
            self.metadata[key] = value

__eq__(other)

Compare this Well object with another for equality.

Parameters:

Name Type Description Default
other Well

Another Well object to compare with.

required

Returns:

Name Type Description
bool bool

True if both Well objects are considered equal, False otherwise.

Example

well1 = Well(name="A1", plate_id=1) well2 = Well(name="A1", plate_id=1) well3 = Well(name="B1", plate_id=1) well4 = Well(name="A1", plate_id=2) well1 == well2 True well1 == well3 False well4 == well1 False

Source code in src/plate_planner/plate.py
def __eq__(self, other) -> bool:
    """
    Compare this Well object with another for equality.

    Args:
        other (Well): Another Well object to compare with.

    Returns:
        bool: True if both Well objects are considered equal, False otherwise.

    Example:
        >>> well1 = Well(name="A1", plate_id=1)
        >>> well2 = Well(name="A1", plate_id=1)
        >>> well3 = Well(name="B1", plate_id=1)
        >>> well4 = Well(name="A1", plate_id=2)
        >>> well1 == well2
        True
        >>> well1 == well3
        False
        >>> well4 == well1
        False
    """
    if isinstance(other, Well):
        return (self.name == other.name and self.plate_id == other.plate_id
                and self.coordinate == other.coordinate
                and self.index == other.index and self.empty == other.empty
                and self.rgb_color == other.rgb_color and self.metadata == other.metadata)
    return False

__repr__()

Provide an unambiguous string representation of the Well object.

Returns:

Name Type Description
str str

A string representation of the well.

Example

well = Well(name="B3", plate_id=2, coordinate=(1, 2), index=3) repr(well) "Well(name='B3', plate_id=2, coordinate=(1, 2), index=3, empty=True, rgb_color=(1, 1, 1), metadata={})"

Source code in src/plate_planner/plate.py
def __repr__(self) -> str:
    """
    Provide an unambiguous string representation of the Well object.

    Returns:
        str: A string representation of the well.

    Example:
        >>> well = Well(name="B3", plate_id=2, coordinate=(1, 2), index=3)
        >>> repr(well)
        "Well(name='B3', plate_id=2, coordinate=(1, 2), index=3, empty=True, rgb_color=(1, 1, 1), metadata={})"
    """
    return (f"Well(name='{self.name}', plate_id={self.plate_id}, "
            f"coordinate={self.coordinate}, index={self.index}, "
            f"empty={self.empty}, rgb_color={self.rgb_color}, metadata={self.metadata})")

as_dict()

Converts the well object to a dictionary.

The method returns a dictionary representation of the well object with the direct attributes of the well and the keys in the metadata attribute.

Returns:

Name Type Description
dict dict

A dictionary representation of the well object.

Example

Convert a Well instance to a dictionary:

well = Well(name="B2", plate_id=2, coordinate=(1, 6), index=13, rgb_color=(0.5, 0.5, 0.5)) well_dict = well.as_dict() print(well_dict) {'name': 'B2', 'plate_id': 2, 'coordinate': (1, 6), 'index': 13, 'empty': True, 'rgb_color': (0.5, 0.5, 0.5)}

Source code in src/plate_planner/plate.py
def as_dict(self) -> dict:
    """
    Converts the well object to a dictionary.

    The method returns a dictionary representation of the well object with the 
    direct attributes of the well and the keys in the metadata attribute.

    Returns:
        dict: A dictionary representation of the well object.

    Example:
        Convert a Well instance to a dictionary:
        >>> well = Well(name="B2", plate_id=2, coordinate=(1, 6), index=13, rgb_color=(0.5, 0.5, 0.5))
        >>> well_dict = well.as_dict()
        >>> print(well_dict)
        {'name': 'B2', 'plate_id': 2, 'coordinate': (1, 6), 'index': 13, 'empty': True, 'rgb_color': (0.5, 0.5, 0.5)}

    """
    attrib_dict = asdict(self)
    del attrib_dict["metadata"]
    attrib_dict.update(self.metadata)

    return attrib_dict

get_attribute_or_metadata(key)

Get the value of a direct attribute or a key in the metadata dictionary.

This method first checks if the provided key corresponds to a direct attribute of the well object. If not, it then checks if the key exists in the metadata dictionary.

Parameters:

Name Type Description Default
key str

The attribute name or metadata key.

required

Returns:

Name Type Description
Any Any

The value of the attribute or metadata key, if found. Returns 'NaN' if not found.

Example:

Retrieve attribute and metadata values from a Well instance:

well = Well(name="B2", plate_id=2, coordinate=(1, 1), index=5, rgb_color=(0.5, 0.5, 0.5)) well.metadata = {"sample_type": "plasma"}
well.get_attribute_or_metadata("plate_id") 2 well.get_attribute_or_metadata("sample_type") 'plasma'

Source code in src/plate_planner/plate.py
def get_attribute_or_metadata(self, key: str) -> Any:
    """
    Get the value of a direct attribute or a key in the metadata dictionary.

    This method first checks if the provided key corresponds to a direct 
    attribute of the well object. If not, it then checks if the key exists 
    in the metadata dictionary.

    Args:
        key (str): The attribute name or metadata key.

    Returns:
        Any: The value of the attribute or metadata key, if found. Returns 'NaN' if not found.

    Example:
    # Retrieve attribute and metadata values from a Well instance:
    >>> well = Well(name="B2", plate_id=2, coordinate=(1, 1), index=5, rgb_color=(0.5, 0.5, 0.5))
    >>> well.metadata = {"sample_type": "plasma"}    
    >>> well.get_attribute_or_metadata("plate_id")
    2
    >>> well.get_attribute_or_metadata("sample_type")
    'plasma'
    """
    # Check if it's a direct attribute
    if hasattr(self, key):
        return getattr(self, key, "NaN")
        # return getattr(self, key, "")

    # Check if it's a key in metadata
    return self.metadata.get(key, "NaN")

set_attribute_or_metadata(key, value)

Set the value of a direct attribute or a key in the metadata dictionary.

This method first checks if the provided key corresponds to a direct attribute of the well object. If so, it sets the value of that attribute. If not, it then updates or adds the key-value pair in the metadata dictionary.

Parameters:

Name Type Description Default
key str

The attribute name or metadata key.

required
value Any

The value to be set for the attribute or metadata key.

required

Example:

Set attribute and metadata values for a Well instance:

well = Well(name="B2", plate_id=2, coordinate=(1, 1), index=5, rgb_color=(0.5, 0.5, 0.5)) well.set_attribute_or_metadata("plate_id", 3) well.set_attribute_or_metadata("sample_type", "serum")

Source code in src/plate_planner/plate.py
def set_attribute_or_metadata(self, key: str, value: Any) -> None:
    """
    Set the value of a direct attribute or a key in the metadata dictionary.

    This method first checks if the provided key corresponds to a direct 
    attribute of the well object. If so, it sets the value of that attribute. 
    If not, it then updates or adds the key-value pair in the metadata dictionary.

    Args:
        key (str): The attribute name or metadata key.
        value (Any): The value to be set for the attribute or metadata key.

    Example:
    # Set attribute and metadata values for a Well instance:
    >>> well = Well(name="B2", plate_id=2, coordinate=(1, 1), index=5, rgb_color=(0.5, 0.5, 0.5))
    >>> well.set_attribute_or_metadata("plate_id", 3)
    >>> well.set_attribute_or_metadata("sample_type", "serum")
    """
    # Check if it's a direct attribute
    if hasattr(self, key):
        setattr(self, key, value)
    else:
        # Set/Add a key-value pair in metadata
        self.metadata[key] = value