If filters
is NULL
, no filtering is done.
Otherwise, the .data
object is filtered via an inner_join()
using all columns of the filter:
inner_join(.data, filter, by = colnames(filter))
by
and na_by
can overwrite the inner_join()
columns used in the filtering.
Arguments
- .data
(
data.frame(1)
,tibble(1)
,data.table(1)
, ortbl_dbi(1)
)
Data object.- filters
(
data.frame(1)
,tibble(1)
,data.table(1)
, ortbl_dbi(1)
)
A object subset data by. If filters isNULL
, no filtering occurs. Otherwise, aninner_join()
is performed using all columns of the filter object.- by
A join specification created with
join_by()
, or a character vector of variables to join by.If
NULL
, the default,*_join()
will perform a natural join, using all variables in common acrossx
andy
. A message lists the variables so that you can check they're correct; suppress the message by supplyingby
explicitly.To join on different variables between
x
andy
, use ajoin_by()
specification. For example,join_by(a == b)
will matchx$a
toy$b
.To join by multiple variables, use a
join_by()
specification with multiple expressions. For example,join_by(a == b, c == d)
will matchx$a
toy$b
andx$c
toy$d
. If the column names are the same betweenx
andy
, you can shorten this by listing only the variable names, likejoin_by(a, c)
.join_by()
can also be used to perform inequality, rolling, and overlap joins. See the documentation at ?join_by for details on these types of joins.For simple equality joins, you can alternatively specify a character vector of variable names to join by. For example,
by = c("a", "b")
joinsx$a
toy$a
andx$b
toy$b
. If variable names differ betweenx
andy
, use a named character vector likeby = c("x_a" = "y_a", "x_b" = "y_b")
.To perform a cross-join, generating all combinations of
x
andy
, seecross_join()
.- na_by
(
character()
)
Columns where NA should match with NA.- ...
Further arguments passed to
dplyr::inner_join()
.
Examples
# Filtering with null means no filtering is done
filter <- NULL
identical(filter_keys(mtcars, filter), mtcars) # TRUE
#> [1] TRUE
# Filtering by vs = 0
filter <- data.frame(vs = 0)
identical(filter_keys(mtcars, filter), dplyr::filter(mtcars, vs == 0)) # TRUE
#> [1] FALSE
# Filtering by the specific combinations of vs = 0 and am = 1
filter <- dplyr::distinct(mtcars, vs, am)
filter_keys(mtcars, filter)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2