This function is used to predict future growth rates based on a model object
created using the 'aedseo' package. It takes the model object and the number
of future time steps (n_step
) for which you want to make predictions and
returns a prediction tibble.
Usage
# S3 method for aedseo
predict(object, n_step = 3, ...)
Arguments
- object
A model object created using the
aedseo
package, typically the result of theaedseo()
function.- n_step
An integer specifying the number of future time steps for which you want to predict growth rates. Default is 3.
- ...
Additional arguments (not used).
Value
A tibble S3 object called aedseo
containing the predicted growth
rates, including time, estimated growth rate, lower confidence interval,
and upper confidence interval for the specified number of future time steps.
Examples
# Analyze the data using the aedseo package
tsd_data <- tsd(
observed = c(100, 120, 150, 180, 220, 270),
time = as.Date(c(
"2023-01-01",
"2023-01-02",
"2023-01-03",
"2023-01-04",
"2023-01-05",
"2023-01-06"
)),
time_interval = "day"
)
aedseo_results <- aedseo(
tsd = tsd_data,
k = 3,
level = 0.95,
family = "poisson"
)
# Predict growth rates for the next 5 time steps
prediction <- predict(object = aedseo_results, n_step = 5)
# Print the prediction
print(prediction)
#> # A tibble: 6 × 5
#> t time estimate lower upper
#> <int> <date> <dbl> <dbl> <dbl>
#> 1 0 2023-01-06 270 270 270
#> 2 1 2023-01-07 331. 301. 363.
#> 3 2 2023-01-08 405. 336. 489.
#> 4 3 2023-01-09 496. 375. 658.
#> 5 4 2023-01-10 608. 418. 885.
#> 6 5 2023-01-11 745. 467. 1191.