
Create a tsd_growth_warning object to count consecutive significant observations
Source:R/consecutive_growth_warnings.R
consecutive_growth_warnings.Rd
This function calculates the number of consecutive significant ("growth_warning") observations,
grouping them accordingly. The result is stored in an S3 object of class tsd_threshold
.
Uses data from a tsd_onset
object (output from seasonal_onset()
).
seasonal_onset()
has to be run with arguments;
season_start
season_end
only_current_season = FALSE
Arguments
- onset_output
A
tsd_onset
object returned fromseasonal_onset()
.
Value
An object of class tsd_growth_warning
, containing;
A tibble of processed observations, the significant_counter column specifies when a sequence of
significant observation starts and ends. The first number is how many subsequent observations will be significant.
Examples
# Generate simulated data of seasonal waves
sim_data <- generate_seasonal_data(
years = 5,
start_date = as.Date("2022-05-26"),
trend_rate = 1.002,
noise_overdispersion = 2,
relative_epidemic_concentration = 3
)
# Estimate seasonal onset
tsd_onset <- seasonal_onset(
tsd = sim_data,
family = "quasipoisson",
season_start = 21,
season_end = 20,
only_current_season = FALSE
)
# Get consecutive significant observations
consecutive_growth_warnings(tsd_onset)
#> # A tibble: 256 × 16
#> reference_time observation season growth_rate lower_growth_rate
#> <date> <dbl> <chr> <dbl> <dbl>
#> 1 2022-06-23 101 2022/2023 0.218 0.110
#> 2 2022-06-30 113 2022/2023 0.226 0.130
#> 3 2022-07-07 159 2022/2023 0.288 0.234
#> 4 2022-07-14 152 2022/2023 0.200 0.111
#> 5 2022-07-21 155 2022/2023 0.109 0.0310
#> 6 2022-07-28 201 2022/2023 0.111 0.0389
#> 7 2022-08-04 197 2022/2023 0.0725 0.0166
#> 8 2022-08-11 237 2022/2023 0.113 0.0699
#> 9 2022-08-18 196 2022/2023 0.0599 -0.0220
#> 10 2022-08-25 235 2022/2023 0.0314 -0.0287
#> # ℹ 246 more rows
#> # ℹ 11 more variables: upper_growth_rate <dbl>, growth_warning <lgl>,
#> # sum_of_cases <dbl>, sum_of_cases_warning <lgl>, seasonal_onset_alarm <lgl>,
#> # skipped_window <lgl>, converged <lgl>, counter <dbl>, changeFlag <lgl>,
#> # groupID <int>, significant_counter <dbl>