This function fits a growth rate model to time series observations and provides parameter estimates along with confidence intervals.
Usage
fit_growth_rate(
observations,
level = 0.95,
family = c("poisson", "quasipoisson")
)
Value
A list containing:
'fit': The fitted growth rate model.
'estimate': A numeric vector with parameter estimates, including the growth rate and its confidence interval.
'level': The confidence level used for estimating parameter confidence intervals.
Examples
# Fit a growth rate model to a time series of counts
# (e.g., population growth)
data <- c(100, 120, 150, 180, 220, 270)
fit_growth_rate(
observations = data,
level = 0.95,
family = "poisson"
)
#> $fit
#>
#> Call: stats::glm(formula = x ~ growth_rate, family = stats::poisson(link = "log"),
#> data = growth_data)
#>
#> Coefficients:
#> (Intercept) growth_rate
#> 4.4008 0.1992
#>
#> Degrees of Freedom: 5 Total (i.e. Null); 4 Residual
#> Null Deviance: 116.2
#> Residual Deviance: 0.04923 AIC: 45.67
#>
#> $estimate
#> growth_rate 2.5 % 97.5 %
#> 0.1992211 0.1624836 0.2362807
#>
#> $level
#> [1] 0.95
#>